PROBABILISTIC COMPUTING WITH CHAOTIC LIGHT

Frank Brückerhoff-Plückelmann, **Hendrik Borras**, Bernhard Klein, Akhil Varri, Marlon Becker, Jelle Dijkstra, Martin Brückerhoff, C. David Wright, Martin Salinga, Harish Bhaskaran, Benjamin Risse, Holger Fröning, Wolfram Pernice

Computing Systems Group https://csg.ziti.uni-heidelberg.de/

UNCERTAINTY PREDICTION WITH NEURAL NETWORKS

How do we get a NN to say: I've never seen this before?

Example: MNIST, but one class is missing in the training data

Classical NNs predict a wrong class with high confidence

Some stochastic treatment required

Focus here: Bayesian Neural Networks

Underlying method: Stochastic Variational Inference (SVI)

Others: MCMC, MCDO, PFP, Deep Ensembles, Max. Softmax

UNCERTAINTY PREDICTION WITH NEURAL NETWORKS

How do we get a NN to say: I've never seen this before?

Example: MNIST, but one class is missing in the training data

Classical NNs predict a wrong class with high confidence

Some stochastic treatment required

Focus here: Bayesian Neural Networks

Underlying method: Stochastic Variational Inference (SVI)

Others: MCMC, MCDO, PFP, Deep Ensembles, Max. Softmax

UNCERTAINTY PREDICTION WITH NEURAL NETWORKS

How do we get a NN to say: I've never seen this before?

Example: MNIST, but one class is missing in the training data

Classical NNs predict a wrong class with high confidence

Some stochastic treatment required

Focus here: Bayesian Neural Networks

Underlying method: Stochastic Variational Inference (SVI)

Others: MCMC, MCDO, PFP, Deep Ensembles, Max. Softmax

UNCERTAINTY PREDICTION WITH NEURAL NETWORKS

How do we get a NN to say: I've never seen this before?

Example: MNIST, but one class is missing in the training data

Classical NNs predict a wrong class with high confidence

Some stochastic treatment required

Focus here: Bayesian Neural Networks

Underlying method: Stochastic Variational Inference (SVI)

Others: MCMC, MCDO, PFP, Deep Ensembles, Max. Softmax

In Domain

BAYESIAN NEURAL NETWORKS

Most basic Bayesian Neural Network idea:

Let's replace the discrete weights with distributions

Then sample multiple times during execution

Creates a discrete distribution at the output

PHOTONIC HARDWARE

On-chip optics possible in recent years

Directly etched onto a silicon waver

Multiplication and addition possible

Matrix vector multiplication possible on small scale (here 4x4 matrix)

Weight matrix programmed into Germanium-Antimony-Telluride nanocells

Activation encoding using electro-optic modulators

Final summation at photo diode readout

PHOTONIC HARDWARE

On-chip optics possible in recent years

Directly etched onto a silicon waver

Multiplication and addition possible

Matrix vector multiplication possible on small scale (here 4x4 matrix)

Weight matrix programmed into Germanium-Antimony-Telluride nanocells

Activation encoding using electro-optic modulators

Final summation at photo diode readout

COMBINING THINGS

Photonic devices	Bayesian Neural Networks
Very high throughput computations	Highly compute intensive
Inherently noisy	Random sampling required
Difficult to run at full speed	Many very similar computations

Collaboration between:

Responsive Nanosystems (PI, Münster)

Computing Systems Group (ZITI, Heidelberg)

Neuromorphic Quantumoptics Group (KIP, Heidelberg)

Pre-print: https://arxiv.org/pdf/2401.17915

RANDOMNESS IN CHAOTIC LIGHT

Chaotic light:

Light of different frequencies with random phase and intensity

Inherent randomness at readout

Dependent on mean signal

Created by bandwidth mismatch:

Optical: 200 GHz; electrical: 30 GHz

Signal pause for decorrelation: 56.8 ps

Theoretical throughput: 17.6 GHz per channel

$$p(x, \bar{x}) = \int_0^\infty \left[\frac{M^M}{\bar{x} \cdot \Gamma(M)} \cdot \left(\frac{v}{\bar{x}} \right)^{M-1} \cdot e^{-M \cdot v/\bar{x}} \right] \cdot \left[\frac{1}{\sqrt{2 \cdot \pi \cdot \sigma_{el}^2}} \cdot e^{-0.5 \cdot (x-v)^2/\sigma_{el}^2} \right] dv$$

RANDOMNESS IN CHAOTIC LIGHT

Chaotic light:

Light of different frequencies with random phase and intensity

Inherent randomness at readout

Dependent on mean signal

Created by bandwidth mismatch:

Optical: 200 GHz; electrical: 30 GHz

Signal pause for decorrelation: 56.8 ps

Theoretical throughput: 17.6 GHz per channel

CREATING DEGREES OF FREEDOM WHERE THERE WERE NONE

Decouple mean signal and randomness

Encode mean and standard deviation as a pulse train

High noise: One-hot encoding

Low noise: Same across all pulses

BUILDING A SIMPLE BNN

Based on LeNet-5 architecture

To simplify BNN architecture:

Only avg. pooling probabilistic

Training and evaluation using Stochastic Variational Inference

MAKING THE NETWORK TRAINABLE

Approximations for training

Approximate photonic PDF as Gaussian

Combine multiple pulses into one sample

Learn the noise level (L) for each activation

VALIDATING PERFORMANCE

Final evaluation on actual photonic PDF

Transfer parameters trained with Gauss model

Pulses sampled individually

Evaluate Accuracy and Out-of-Domain detection performance

Performance is roughly maintained

	Accuracy [%]	Difference in avg. Mutual Information
Gauss BNN	99.41	23.24
Photonic BNN	99.37	25.60

Probabilsitc Layer, Photonic-BNN

CLASSIFICATION AND OUT-OF-DOMAIN DETECTION PERFORMANCE

Left and middle: Cherry picked examples of network outputs

Right: In-Domain vs. Out-of-Domain performance

Histogram of Mutual Information

Mutual Information computed on the output scores

QUALITY COMPARISON

Investigate Receiver Operating Characteristic (ROC) curve

Use area under curve as quality measure

How many sampling steps are sensible?

How do we compare to deterministic uncertainty estimation methods?

QUALITY COMPARISON

Investigate Receiver Operating Characteristic (ROC) curve

Use area under curve as quality measure

How many sampling steps are sensible?

About 100 samples

How do we compare to deterministic uncertainty estimation methods?

QUALITY COMPARISON

Investigate Receiver Operating Characteristic (ROC) curve

Use area under curve as quality measure

How many sampling steps are sensible?

About 100 samples

How do we compare to deterministic uncertainty estimation methods?

Quite favorably

SUMMARY

Built a high-performance photonic bayesian machine Based on on-chip photonics and chaotic light Very high sampling rate (70.4 GS/s)

Enable flexible stochastic parameters though encoding Demonstrate good out-of-domain detection

While showing good in-domain classification

