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To: vertically integrated approach to
efficient ML => HW systems for Al
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CMOS TECHNOLOGY
TRENDS & IMPLICATIONS

Governed by Moore & Dennard




POST-DENNARD PERFORMANCE SCALING

perf[OSS] = P|W| - e[OS)S]

Energy is additive

= P . (e()p +e, .. )
Operation 4/ \ Memory access
6017 pmc(t b) emem mem(d b )
FPGA SRAM HBM
GP A
VU cpu DRAM
CMOS-BASED, ARCH DEP. TECHNOLOGY DEP.

Power p, energy e, data type f[{float, int}], bit width b, distance d[mm]



PARALLELISM
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PARALLELISM, LOCALITY
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Computations are of little importance in comparison to memory accesses

M. Horowitz, "1.1 Computing’s energy problem (and what we can do about it),” 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). doi: 10.1109/155CC.2014.675732



PARALLELISM, LOCALITY

3 @ Bernhard, Hendrik,
Kazem, Gregor, Lena

Integer pJ
Add

<3elif 0.007
<yaei 0.03

Ratios got more extreme over time, HBM came to a rescue

Norman P. Jouppi, et al. 2021. Ten lessons from three generations shaped
Google’s TPUv4i. ISCA. https://doi.org/10.1109/1SCA52012.2021.00010



https://doi.org/10.1109/ISCA52012.2021.00010

PARALLELISM, LOCALITY, STRUCTURE

Vector instructions are
Compact: single instruction defines N operations IX 20-1300PT (FETCH)

Amortizes the cost of instruction fetch/decode/issue

4x SIMD example

Also reduces the frequency of branches

Instruction stream

Parallel: N operations are (data) parallel
No dependencies

No need for complex hardware to detect parallelism
(similar to VLIW)

Can execute in parallel assuming N parallel data paths

Expressive: memory operations describe patterns

Continuous or regular memory access pattern

IX 20-Y300PY (CACHE ™SS
Can prefetch or accelerate using wide/multi-banked memory N-IX 20PT (CACHE HITD

Can amortize high latency for 1st element over large sequential pattern



PARALLELISM, LOCALITY, STRUCTURE AND
PREDICTABILITY

Memory hierarchy Memory hierarchy
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Temporal architecture:
BSP-based multi-core vector processor

Spatial architecture: Systolic array
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Need for ...

FPGA/CGRA

PLSP EXAMPLES

Parallelism

Low
(core count)

Extreme
(CUDA core count)

High
(array size)

High
(array size)

Locality

Medium
(caching)

Medium
(shared mem)

High
(blocking NOC)

Extreme
(neighbor only)

Structure

Medium (v=512,
cache block size)

High (v=1024 -
warp concept),
memory coalescing

Depends

Extreme
(v=512k - 256x256
array of 8-bit mult.)

Predictability

Low (speculation,
O0Q, caching)

Low (multi-
threading)

High
(spatial processing)

Extreme
(systolic array)

11



NEURAL ARCHITECTURES

PARALLELISM, LOCALITY, STRUCTURE AND
PREDICTABILITY (PLSP
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DEEP NEURAL NETWORKS ARE VERY INLINE WITH
PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP Quantization

Maximizing sparsity, tenary quantization

Huffman coding and RLE for compact data structures => more cache hits
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[1] Glnther Schindler, Matthias Zohrer, Franz Pernkopf and Holger Froning, Towards Efficient Forward

Propagation on Resource-Constrained Systems, ECML 2018, https://doi.org/ 10.1007/978-3-030-10925-7_26

[2] Glinther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Froning, Parameterized Structured Pruning
for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Froning, Towards Hardware-Specific Automatic Compression of
Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818 13
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DEEP NEURAL NETWORKS ARE VERY INLINE WITH
PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP Quantization

Maximizing sparsity, tenary quantization

Huffman coding and RLE for compact data structures => more cache hits

Parametrized Structured Pruning [2] -> GPUs - PLSP / PLSP

Pruning towards block sparsity, with block size being inline with GPU architecture

. nin ol |

Thread warp size, memory coalescing, ...
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H
H
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(a) Weights  (b) Columns (c) Channels (d) Shapes (e) Layers

[1] Glnther Schindler, Matthias Zohrer, Franz Pernkopf and Holger Froning, Towards Efficient Forward
Propagation on Resource-Constrained Systems, ECML 2018, https://doi.org/ 10.1007/978-3-030-10925-7_26

[2] Glinther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Froning, Parameterized Structured Pruning
for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Froning, Towards Hardware-Specific Automatic Compression of
Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818
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DEEP NEURAL NETWORKS ARE VERY INLINE WITH
PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP Quantization

Maximizing sparsity, tenary quantization

Parametrized Structured Pruning [2] -> GPUs - PLSP / PLSP

Pruning towards block sparsity, with block size being inline with GPU architecture

Huffman coding and RLE for compact data structures => more cache hits

Thread warp size, memory coalescing, ...

Galen (NAS) [3] -> generalization, but up to now only on ARM CPUs

Combining fine-grained quantization with channel pruning

Layer-dependent decisions Bernhard,

Saturday

Latency test on real HW targets for reinforcement learning

[1] Glnther Schindler, Matthias Zohrer, Franz Pernkopf and Holger Froning, Towards Efficient Forward
Propagation on Resource-Constrained Systems, ECML 2018, https://doi.org/ 10.1007/978-3-030-10925-7_26

[2] Glinther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Froning, Parameterized Structured Pruning
for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Froning, Towards Hardware-Specific Automatic Compression of
Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818 15
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REASONING ABOUT UNCERTAINTY?

SOTA NN arch

Based on pretrained ResNet18/torchvision

-

o: computer

Top-10 Classification
1: Persian cat (65.3%)
2. tabby (11.9%)

3: lynx (11.6%)

4: tiger cat (7.6%)
5: Egyptian cat (1.8%)

7 lion (0.1%)
8: carton (0.1%)

9: plastic bag (0.1%)
10: washer (0.1%)

Keyboard (0.2%)

~
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REASONING ABOUT UNCERTAINTY? @

SOTA NN arch
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Based on pretrained ResNet18/torchvision

-

Top-10 Classification
1: jellyfish (13.1%)

2.
3.

nammerhead (3.7%)

4‘:
®

igsaw puzzle (3.5%)

electric ray (2.6%)

. sea snake (2.4%)

~ stingray (2.3%)
yrayer rug (2.0%)
starfish (2.0%)
coral reef (1.5%)
- doormat (1.4%)

~
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SAMPLING GALLERY OF 2D PROBABILITY
DISTRIBUTION (BANANA)

Gibbs © Efficient NUTS

https://chi-feng.qgithub.io/ mcmc-demo/ app.html
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‘It you have a vector problem, build a vector processor”

—Jim Smith/Wisconsin

‘It you have a dataflow problem (DNN), build a dataflow

Drocessor”
—Kunle Olukotun/Stanford (Keynote ISCA 2023)

So should we build a Bayesian Machine?
U0, = ) DWHx), W~ P, U0, = Y WO X)+v,v~ N0,
N N

Hys Oy 1= 2 OWDx), W~ N(u,,o,)
N 19



BAYESIAN MACHINES
(COLLAB. WITH WOLFRAM PERNICE/HEIDELBERG UNIV.)

Analog processors are promising in energy
efficiency, but inherently come with noise

Let’s use noise as a source of randomness

Caveat: we need some control over the noise

Photonic probabilistic processor

Chaotic light source

Coding as noise control :
DNN model can now say “l don’t know” & |

6250 1 | == oD

|
‘;‘Jﬁ

9-class MNIST: do not show 9 during
training, but test for it

0.0 0.5 1.0
Mutual Informat ion

20
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WRAPPING UP




e d \ BES L, LA R
Founding event
Faculty of Engineering

Sciences, 2022

“Scientists study the world as it is, engineers

create the world that never has been.”
—Theodore von Karman (1881-1963)

Analyze behavior
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Founding event
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Sciences, 2022

Scientists study the world as it is, engineers

create the world that never has been.”
—Theodore von Karman (1881-1963)

Analyze behavior

W BAYESIAN
MACHINE 23



WRAPPING UP

CMOS is stuttering, but future scaling demands for
arallelism, locality, structure and predictabilit

(PLSP)

Due to different economic settings still alive -> cloud,
hyperscalers

DNNs very inline with PLSP, variants such as BNNs not

pJ as interface in between architecture and device
technology

Simple, easy to reason about, abstract HARDWARE

. . e . LOTNERY:
Bayesian Machines can be promising to leverage ~"@ DS
inherent noise in analog computing as a benefit

Caveat: control over noise required
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Sara Hooker. 2021. The hardware lottery. Commun. ACM 64, 12 (December 2021). https://doi.org/10.1145/3467017
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