

POST-DENNARD PERFORMANCE SCALING

HOLGER FRÖNING HOLGER.FROENING@ZITI.UNI-HEIDELBERG.DE COMPUTING SYSTEMS GROUP, INSTITUTE OF COMPUTER ENGINEERING (ZITI) HEIDELBERG UNIVERSITY

SINO-GERMAN WORKSHOP, XI'AN, OCT 10-16, 2024

RESEARCH BACKGROUND

From: database engineer, HW designer (ASICS, FPGA), HPC

Neural Architectures

Compiler

Plethora of HW

$$perf[\frac{ops}{s}] = p[Watt] \cdot e[\frac{ops}{J}]$$
 $P = afCV^2 + VI_{leakage}$

$$P = afCV^2 + VI_{leakage}$$

To: vertically integrated approach to efficient ML => HW systems for Al

$$a_y = a_{y=0} \cdot 2^{y/2}$$

$$s.t. \operatorname{argmin}_{t}^{\$}$$

$P = afCV^2$

CMOS TECHNOLOGY TRENDS & IMPLICATIONS

Governed by Moore & Dennard

POST-DENNARD PERFORMANCE SCALING

Power p, energy e, data type $t[\{float, int\}]$, bit width b, distance d[mm]

PARALLELISM, LOCALITY, STRUCTURE AND PREDICTABILITY

$$P = afCV^2 + VI_{leakage} \propto f^3$$

Frequency reduction In-order pipelines

Replication

Massively parallel Energy efficient

PARALLELISM, LOCALITY, STRUCTURE AND

45nm, 2014

PREDICTABILITY

Integer	рJ	
Add		
8 bit	0.03	
32 bit	0.1	
Mult		
8 bit	0.2	
32 bit	3.1	

FP	рJ	
FAdd		
16 bit	0.4	
32 bit	0.9	
FMult		
16 bit	1.1	
32 bit	3.7	

Memory	рJ	
SRAM	(64 bit)	
8kB	10	
32kB	20	
1MB	100	
DDR4	1300 - 2600	

Computations are of little importance in comparison to memory accesses

PARALLELISM, LOCALITY, STRUG

7nm, 2021

PREDICTABILITY

@ Bernhard, Hendrik, Kazem, Gregor, Lena

Integer	рJ	
Add		
8 bit	0.007	
32 bit	0.03	
Mult		
8 bit	0.07	
32 bit	1.48	

FP	рJ
FAdd	
16 bit	0.16
32 bit	0.38
FMult	
16 bit	0.34
32 bit	1.31

FPGA?

Photonic?

CNTCMOS?

MRAM? RRAM?

Ratios got more extreme over time, HBM came to a rescue

PARALLELISM, LOCALITY, STRUCTURE AND

PREDICTABILITY

Vector instructions are

Compact: single instruction defines N operations

Amortizes the cost of instruction fetch/decode/issue

Also reduces the frequency of branches

Parallel: N operations are (data) parallel

No dependencies

No need for complex hardware to detect parallelism (similar to VLIW)

Can execute in parallel assuming N parallel data paths

Expressive: memory operations describe patterns

Continuous or regular memory access pattern

Can prefetch or accelerate using wide/multi-banked memory

Can amortize high latency for 1st element over large sequential pattern

PARALLELISM, LOCALITY, STRUCTURE AND PREDICTABILITY

Temporal architecture: BSP-based multi-core vector processor

Spatial architecture: Systolic array

ARRAY PROCESSOR EXAMPLES

XILINX Versal AI

NVIDIA TensorCore

GraphCore IPU

Google TPU

Sunway SW26010

PLSP EXAMPLES

Need for	Parallelism	Locality	Structure	Predictability
CPU	Low (core count)	Medium (caching)	Medium (v=512, cache block size)	Low (speculation, OOO, caching)
GPU	Extreme (CUDA core count)	Medium (shared mem)	High (v=1024 - warp concept), memory coalescing	Low (multi- threading)
FPGA/CGRA	High (array size)	High (blocking NOC)	Depends	High (spatial processing)
TPU	High (array size)	Extreme (neighbor only)	Extreme (v=512k - 256×256 array of 8-bit mult.)	Extreme (systolic array)

NEURAL ARCHITECTURES & PARALLELISM, LOCALITY, STRUCTURE AND PREDICTABILITY (PLSP)

DEEP NEURAL NETWORKS ARE VERY INLINE WITH PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP

Quantization

Maximizing sparsity, tenary quantization

Huffman coding and RLE for compact data structures => more cache hits

Huffman coding and RLE for compact data structures => more
$$c = \sum_{i=1}^N w_i \cdot a_i, \quad w_i, a_i \in \mathbb{R}$$

$$w_i \in \{W_P, 0, W_N\}$$

$$c = W_l^p \cdot \sum_{i \in \mathbf{i}_l^p} a_i + W_l^n \cdot \sum_{i \in \mathbf{i}_l^n} a_i$$

[1] Günther Schindler, Matthias Zöhrer, Franz Pernkopf and Holger Fröning, Towards Efficient Forward Propagation on Resource-Constrained Systems, ECML 2018, https://doi.org/10.1007/978-3-030-10925-7_26

[2] Günther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Fröning, Parameterized Structured Pruning for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Fröning, Towards Hardware-Specific Automatic Compression of Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818

DEEP NEURAL NETWORKS ARE VERY INLINE WITH PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP

Maximizing sparsity, tenary quantization

Huffman coding and RLE for compact data structures => more cache hits

Parametrized Structured Pruning [2] -> GPUs - PLSP / PLSP

(a) Weights

Pruning towards block sparsity, with block size being inline with GPU architecture

Thread warp size, memory coalescing, ...

Unstructured

Pruning

Quantization

[2] Günther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Fröning, Parameterized Structured Pruning for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Fröning, Towards Hardware-Specific Automatic Compression of Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818

DEEP NEURAL NETWORKS ARE VERY INLINE WITH PLSP - SWEET FREEDOM

Reduce-and-Scale [1] -> embedded CPUs - PLSP

Maximizing sparsity, tenary quantization

Huffman coding and RLE for compact data structures => more cache hits

Parametrized Structured Pruning [2] -> GPUs - PLSP / PLSP

Pruning towards block sparsity, with block size being inline with GPU architecture Thread warp size, memory coalescing, ...

Pruning

Quantization

Galen (NAS) [3] -> generalization, but up to now only on ARM CPUs

Combining fine-grained quantization with channel pruning Layer-dependent decisions

Latency test on real HW targets for reinforcement learning

Bernhard, Saturday

Quant./ Prune

[1] Günther Schindler, Matthias Zöhrer, Franz Pernkopf and Holger Fröning, Towards Efficient Forward Propagation on Resource-Constrained Systems, ECML 2018, https://doi.org/10.1007/978-3-030-10925-7_26

[2] Günther Schindler, Wolfgang Roth, Franz Pernkopf and Holger Fröning, Parameterized Structured Pruning for Deep Neural Networks, LOD 2020, http://arxiv.org/abs/1906.05180

[3] Torben Krieger, Bernhard Klein and Holger Fröning, Towards Hardware-Specific Automatic Compression of Neural Networks, PracticalDL Workshop @ AAAI 2023, https://arxiv.org/abs/2212.07818

REASONING ABOUT UNCERTAINTY?

SOTA NN arch

Image

Top-10 Classification

1: Persian cat (65.3%)

2: tabby (11.9%)

3: lynx (11.6%)

4: tiger cat (7.6%)

5: Egyptian cat (1.8%)

6: computer keyboard (0.2%)

7: lion (0.1%)

8: carton (0.1%)

9: plastic bag (0.1%)

10: washer (0.1%)

REASONING ABOUT UNCERTAINTY? .

Top-10 Classification

1: jellyfish (13.1%)

2: hammerhead (3.7%)

3: jigsaw puzzle (3.5%)

4: electric ray (2.6%)

5: sea snake (2.4%)

stingray (2.3%)

prayer rug (2.0%)

starfish (2.0%)

coral reef (1.5%)

doormat (1.4%)

SAMPLING GALLERY OF 2D PROBABILITY DISTRIBUTION (BANANA)

"If you have a vector problem, build a vector processor"

-Jim Smith/Wisconsin

"If you have a dataflow problem (DNN), build a dataflow processor"

-Kunle Olukotun/Stanford (Keynote ISCA 2023)

So should we build a Bayesian Machine?

$$\mu_{y}, \sigma_{y} := \sum_{N} \Phi(\mathbf{W} \oplus \mathbf{x}), \mathbf{W} \sim \mathcal{P}_{W} \qquad \qquad \mu_{y}, \sigma_{y} := \sum_{N} \Phi(\mathbf{W} \oplus \mathbf{x}) + \mathbf{v}, \mathbf{v} \sim \mathcal{N}(0, \sigma_{v})$$

$$\mu_{y}, \sigma_{y} := \sum_{N} \Phi(\mathbf{W} \oplus \mathbf{x}), \mathbf{W} \sim \mathcal{N}(\mu_{w}, \sigma_{w})$$

BAYESIAN MACHINES (COLLAB. WITH WOLFRAM PERNICE/HEIDELBERG UNIV.)

Analog processors are promising in energy efficiency, but inherently come with noise

Let's use noise as a source of randomness

Caveat: we need some control over the noise

Chaotic light source

Coding as noise control

DNN model can now say "I don't know" 💩

9-class MNIST: do not show 9 during training, but test for it

WRAPPING UP

Founding event Faculty of Engineering Sciences, 2022

"Scientists study the world as it is, engineers create the world that never has been."

-Theodore von Kármán (1881-1963)

Founding event Faculty of Engineering Sciences, 2022

"Scientists study the world as it is, engineers create the world that never has been."

-Theodore von Kármán (1881-1963)

BNN

Analyze behavior

Study DNNs

New Tools

Improve execution

BAYESIAN MACHINE 23

WRAPPING UP

CMOS is stuttering, but future scaling demands for <u>parallelism</u>, <u>locality</u>, <u>structure and predictability</u> (PLSP)

Due to different economic settings still alive -> cloud, hyperscalers

DNNs very inline with PLSP, variants such as BNNs not

pJ as interface in between architecture and device technology

Simple, easy to reason about, abstract

Bayesian Machines can be promising to leverage inherent noise in analog computing as a benefit

Caveat: control over noise required

