
Sino-German Workshop on Multi-Physics Device Simulation and hardware-aware Computing
Oct 10-15, Xi’An, China

Machine Learning Accelerators
in Bioinformatics

Kazem Shekofteh

Post-Doctoral Research Fellow, ZITI Fellow
Computing Systems Group, Institute of Computer Engineering, Heidelberg University

￼1

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• Early 2010: Need for specialized hardware in AI accelerates, with
companies like Graphcore leading the way.

• 2017: Graphcore introduced the first IPU for AI/ML workloads
(Colossus™ MK1 - GC2 IPU).

• 2020: Colossus™ MK2 - GC200 IPU

• 2022: Graphcore and TSMC presented the Bow IPU, a 3D package
of a GC200 die bonded face to face to a power-delivery die that
allows for higher clock rate at lower core voltage

Introduction and History

2

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• Key components:
• Massively Parallel Processor Cores: Thousands of small, independent cores designed

to handle parallel tasks simultaneously.

• Memory Architecture: IPUs have on-chip memory designed to provide ultra-fast
access to data for efficient AI training/inference.

• Fine-Grained Processing: Suited for sparse data sets and small computational
graphs, unlike GPUs which are optimized for dense, large-scale computation.

• Key Features:
• Low-latency, high-bandwidth (SRAM) memory access.

• Optimized for machine learning models, including graph-based models.

• Were developed for AI applications but showed potential for other HPC applications

Architecture

3

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Architecture

4

• 1472 Tiles per GC200
• 600KB Memory per Tile (On-Chip)
• 900MB Memory per IPU
• Only Tile-local Memory access
• Up to 6 Threads per Tile
• 250 TFLOPs of peak FP16
• 62.5 TFLOPs of peak FP32
• 150W TDP
• 1.325 GHz
• 11 TB/s all-to-all IPU-Exchange
• 320 GB/s chip-to-chip BW

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
CPU vs. GPU vs. IPU

5

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
IPU Chip vs. GPU chip

6

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
IPU Machine: M2000

7

• Four GC200 IPUs
• Totally 1 PFlops of AI compute
• 3.6GB On-Chip Memory
• Up to 256GB Streaming Memory
• Scales up to 64K-IPUs
• 512Gbps inter IPU BW

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
NVIDIA DGX-A100 vs. COLOSSUS MK2

8

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Programming Model

9

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• A comprehensive software development toolkit designed specifically for
programming and optimizing applications on Graphcore IPUs.

Programming Model: Poplar SDK

10

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Tools: PopVision Graph Analyzer

11

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU Performance Analysis
Motivation Example: MatMul A30 vs GC200

12

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU Performance Analysis
Locality in communication (IPU-Exchange)

13

Observation 1: Latency and bandwidth of data accesses in between different IPU-Tiles are
tightly coupled with data size, but are independent of their location.

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU Performance Analysis
Squared and Skewed MatMul

14

Observation 2: Evaluation results show promising performance for the IPU in different
scenarios, especially for linear algebra operations based on skewed matrices or sparse matrices.

A(m × n) × B(n × k) = C(m × k) : skewness =
m
n

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU Performance Analysis
Memory usage for the IPU

15

Observation 3: The overall memory usage for the IPU does not only depend on the problem
size, but there are additional effects with substantially increase in overall memory usage.

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• S.-Kazem Shekofteh, Christian Alles, and Holger Fröning. 2023. Reducing Memory
Requirements for the IPU using Butterfly Factorizations. 14th IEEE International
Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems @ SCS’23, Denver, CO

• On Performance Analysis of Graphcore IPUs: Analyzing Squared and Skewed Matrix
Multiplication, K. Shekofteh, C. Alles, N. Kochendörfer, H. Fröning - arXiv preprint
arXiv:2310.00256, 2023

• Distributed Butterfly Machine Learning with IPUs

• X-Drop Sequence Alignment Implementation on IPUs

• MIMD Kernels for Sequence Alignment on IPUs

Our Past and Ongoing Research on IPUs

16

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• Butterfly factorization

• a technique used in applied mathematics to efficiently factorize a matrix into a
product of sparse matrices.

• accelerates matrix computations (matrix-vector multiplications)

• reducing computational complexity and memory requirements
• commonly used in fast algorithms like FFT

• Dao et al. [1]: Butterfly matrices: replacing specific transformations by universal
building blocks called butterfly factors

Reducing Memory Requirements for the IPU Using Butterfly Factorizations

17
[1] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Re. 2019. Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations. In Proceedings of the 36th International Conference
on Machine Learning

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

18
[1] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Re. 2019. Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations. In Proceedings of the 36th International Conference
on Machine Learning

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

19

• Evaluation of BF and PF, compared to torch.nn.Linear on both A30 and GC200

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

20

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

20

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

98.5%
compress

61.9%
compress

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

21

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

•

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

21

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

<4%
loss

1-7%
loss

3-8%
loss

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

•

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

22

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

1.17x 1.10x 0.53x

1.62x

0.72x

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

23

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

23

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

23

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Single-Hidden-Layer (SHL) benchmark on CIFAR-10 dataset with different structures matrix methods
compared to baseline matrix approach on GPU and IPU

⇒ butterfly variants: high compression ratio + acceptable accuracy

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

24

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Comparison of mean and standard deviation of metrics when varying parameters on the IPU

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Recommendation:
Set the low-rank size to the maximum

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

24

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Comparison of mean and standard deviation of metrics when varying parameters on the IPU

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Recommendation:
Set the low-rank size to the maximum

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

24

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Comparison of mean and standard deviation of metrics when varying parameters on the IPU

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Recommendation:
Set the low-rank size to the maximum

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Reducing Memory Requirements for the IPU Using Butterfly Factorizations

24

S-Kazem Shekofteh, Christian Alles, and Holger Fröning. Reducing Memory Requirements for the IPU using Butterfly Factorizations. PMBS 2023 @ SC ’23

Comparison of mean and standard deviation of metrics when varying parameters on the IPU

PMBS23, November 13, 2023, Denver, CO Sheko�eh et al.

Figure 7: Number of compute sets on the IPU with square matrix dimensions

While the GPU substantially gains from the bene�ts of pixel�y
with regard to structure, the IPU does not share the same advantage
but rather su�ers from the computational overhead. We conclude
this experiment that structured sparsity (pixel�y) comes at addi-
tional cost but is of extreme importance for dense processors such
as a GPU with and without Tensor Cores, however, a sparse pro-
cessor such as the IPU su�ers from the additional overhead in
terms of compute and memory while there is no direct bene�t from
structural aspects such as memory alignment.

As the pixel�y approach did not work on the MNIST dataset due
to the requirements of the matrix sizes being a power of two, we
cannot perform a similar comparison for this task. However, one can
see that the general trend of the overhead of butter�y for the two
GPU con�gurations holds true, indicating a similar overall behavior.
In general, as CIFAR-10 is considered a substantially more complex
task than MNIST, we did not put additional e�ort on MNIST.

Table 4: Single-Hidden-Layer (SHL) benchmark on CIFAR10
dataset with di�erent structured matrix methods compared
to baseline matrix approach on GPU and IPU

Accuracy [%] Execution Time [s]
GPU IPU GPU IPU

Method NParams w/ TC w/o TC w/TC w/o TC
Baseline 1059850 43.94 43.4 44.7 50.43 49.46 24.69
Butter�y 16390 42.27 40.75 41.13 61.93 61.46 37.73
Fastfood 14346 38.64 37.94 37.68 53.55 51.15 60.70
Circulant 12298 28.74 29.21 28.40 54.26 53.92 21.82
Low-rank 13322 18.64 18.49 18.59 49.71 53.21 21.75
Pixel�y 404490 42.61 43.31 43.79 52.79 56.01 71.62

5 PARAMETER SWEEP FOR PIXELFLY
Last, we are interested to which extent the performance of pix-
el�y factorization depends on the chosen parameters for such an
approximation. In particular, we want to make sure that the previ-
ously reported performance of pixel�y on the IPU is representative,
i.e., that we are not missing particular parameter sets that would
improve performance.

We thus brie�y study the implications of parameter choices,
notably low rank size on the resulting butter�y size and also the
model’s overall accuracy. While a vast amount of experiments have

been conducted, we summarize the results by making two of three
parameters constant, and only varying the third. We do this for
every combination of the constant parameters and extract the max-
imum standard deviation. The results are presented in Table 5.

Table 5: Comparison of mean and standard deviation of met-
rics when varying parameters on the IPU

Butter�y
size

Block
size

Low-Rank
size Metric mean std

var.
23 Time[s] 372 107
24 21 Accuracy[%] 43.8 2.2
25 NParams 1064970 326625

var.
22 Time[s] 465 192

21 26 Accuracy[%] 38.9 1.4
27 NParams 81930 184638

22 24
var.

Time[s] 465 18
27 23 Accuracy[%] 37.8 2.7
24 24 NParams 344074 181317

Regarding execution time, the in�uence of the low rank size
is relatively minimal, as indicated by<0GBC3 = 18. This outcome
aligns with expectations, considering that the low rank term is
realized through a dense matrix multiplication. The IPU superior
throughput for larger problem sizes contributes to this e�ect. As it
also has the highest impact on the test accuracy with a standard
deviation of 2.7%, it is recommended to set the low rank size to the
maximum. The greatest impact on execution time is created when
varying the block size with<0GBC3 = 192. The butter�y size has the
biggest impact on the number of parameters with<0GBC3 = 184638.
We conclude that for the SHL benchmark with the CIFAR10 dataset,
it is bene�cial to adapt the con�guration of pixel�y depending on
the target parameter. There is no con�guration being optimal with
regard to execution time, test accuracy, and parameter count at
once, hence, it has to be chosen depending on the primary target.

6 CONCLUSION AND FUTUREWORKS
GPUs have gained extensive traction across diverse scienti�c do-
mains, owing to their remarkable capacity for enhancing perfor-
mance. They notably excel in speci�c tasks, heralding substantial
performance enhancements. Conversely, the IPU emerges as an

Recommendation:
Set the low-rank size to the maximum

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units

• An extension to our previous work to implement it on multiple IPUs.

•

Distributed Butterfly Machine Learning with IPUs

25

Master Project work by Daniel Bogacz, May -August 2023

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Distributed Butterfly Machine Learning with IPUs

26

Master Project work by Daniel Bogacz, May -August 2023

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Distributed Butterfly Machine Learning with IPUs

27

Master Project work by Daniel Bogacz, May -August 2023

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Intelligence Processing Units
Distributed Butterfly Machine Learning with IPUs

28

Master Project work by Daniel Bogacz, May-August 2024

• torch.nn.Linear vs Butterfly Layers on Multi-IPU
• Our previous results [Shekofteh et al. 2023] could be confirmed

• High compression rate with Butterfly (97.17%)

• Longer training time due to slow Butterfly implementation (Torch instead of Poplar)

• Similar accuracy achieved (86.10% Butterfly and 88.65% nn.Linear)

• Multi-IPU vs Multi-GPU

• More stable loss trajectory for GPUs than IPUs (different optimizer implementation)

• 1.73x speedup in training time with GPUs (401.44min GPUs vs 694.03min IPUs)

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU in Bioinformatics
Introduction to Bioinformatics

29

• Sequence Alignment problem
• Well-known solutions are dynamic-programming-based:

• Needleman-Wunsch (NW): global alignment

• Smith-Waterman (SW): local alignment

• Semi-global methods: X-Drop

• Finding the optimal solution for these algorithms

• quadratic time as a function of sequence length.

• Main properties of the problem and common solutions:

• Irregularity in parallelization of dynamic-programming methods

• Sparsity in some cases

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU in Bioinformatics
Introduction to Bioinformatics

30

• Core computations in NW and SW

and vector lengths provided by the SPARC processor, hence
a specific implementation. Others exist, however most follow
closely to the above examples.

Hardware features are changing at a rapid pace. SIMD
instructions operate on registers that have a specific vector
length, which is ever increasing. For example, Intel has
increased the SIMD vector length from 128 bits with SSE
to 512 bits with AVX512. The same trends can be seen with
AMD CPUs. Similarly, ARM processors are now equipped
with variable SIMD length that can be expanded to 1024
bits. As such, past implementations may fall short and incur
performance penalties on current hardware systems. Farrar’s
implementation may require the correction loop be invoked
many more times, given that the speculative execution is
dependent on the SIMD vector length. Wozniak’s implemen-
tation may incur execution penalties if the approach is left
as is and no flexible implementations tailored to each SIMD
architecture is offered. In this work, we propose an approach
to overcome some of these problems. We will show that
our method allows for an efficient kernel implementation that
achieves close to peak performance on Intel, AMD and ARM
processors.

Contributions: The paper makes the following contribu-
tions:

• We show a systematic approach for designing efficient
kernels for computing the maximal score.

• We show that our approach is portable across platforms
and achieves close to peak performance.

• We discuss each design choice and provide a detailed
analysis of the performance results.

II. BACKGROUND

In this section, we give a brief description to DNA and
protein sequences. We then give a brief description of the
Smith-Waterman algorithm (Needleman-Wunsch is similar and
we just hint at the differences), focusing on the anti-diagonal
implementation. We glance on the notion of a similarity
matrix, since this will have an impact on the performance as
outlined in the result section. Finally, we give a brief outline
to SIMD instructions and how they can be used for sequence
alignment computation.

A. DNA and Protein Sequences
Sequence alignment typically operates on two sequences, a

query Q and a reference R. For example, the query sequence
Q of length m is defined as

Q = [q0, q1, . . . , qm−1], (1)

where q0, q1, ..., qm−1 represent the m characters in that
sequence. The reference sequence R is defined similarly. The
characters can take any value in a given an alphabet set Σ.
For DNA, the alphabet Σ = {A,C,G, T,X}, where A, C,
G, T are the four nucleotides and X represents the unknown
character. For proteins, the alphabet Σ has cardinality 20, each
element of the alphabet representing the basic aminoacids.
There are also ”non-standard” amino acids that are added to
the alphabet set increasing Σ’s cardinality to 26 [14].

B. Smith-Waterman and Needleman-Wunsch
The process of aligning two sequences Q of size m and R

of size n is synonym to computing the best match between
the two sequences. Most algorithms like Smith-Waterman and
Needleman-Wunsch create a scoring matrix of size m×n and
populate that matrix based on some predefined rules. Both
algorithms follow the same steps, with some small differences.
In the following paragraphs, we focus only on the Smith-
Waterman algorithm using an affine gap penalty scheme as
outline in Gotoh [11]. Towards the end of the subsection,
we briefly talk about other variants and also the Needleman-
Wunsch algorithm.

As outlined in Figure 1, the Smith-Waterman algorithms
starts by initializing the scoring matrix such that

H[i, j] = 0, ∀i = 0 and j = 0..n (2)
H[i, j] = 0, ∀i = 0..m and j = 0, (3)

where the first row and column of H are initialized with
0. Similarly, the E and F buffers are initialized with 0.
The algorithm first computes values in E and F , used for
determining the gap penalties.The E buffer is updated such
that

E[i] = max






H[i, j − 1] +GAPOPEN

E[i] +GAPEXT

0

∀i = 1..m, (4)

where GAPOPEN and GAPEXT are the user defined penal-
ties for opening a gap in the alignment and for extending the
gap penalty. The F buffer is updated in a similar fashion

F [j] = max






H[i− 1, i] +GAPOPEN

E[j] +GAPEXT

0

∀j = 1..n. (5)

Note that E is update according to the i index and F is updated
according to the j index. Once this values are computed, the
score matrix cell corresponding to i and j is updated such that

H[i, j] = max






H[i− 1, j − 1] + S[Q[i− 1], R[j − 1]]

E[i]

F [j]

0

∀i = 1..m and j = 1..n,
(6)

where S represents a similarity matrix and E and F are the
affine gap penalty values computed before hand.

Computing the comparison between the query Q and ref-
erence R is done through the use of a similarity matrix
S[Q[i−1], R[j−1]], which may be provided or not. For DNA,
the comparison between the characters can be directly done or
a similarity matrix can be provided. The direct comparison can
be more efficient, while the similarity matrix variant requires
some extra processing. This choice can have performance im-
pacts as we will show in the result section. For proteins, there
is only one solution namely that of having a similarity matrix

168

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

and vector lengths provided by the SPARC processor, hence
a specific implementation. Others exist, however most follow
closely to the above examples.

Hardware features are changing at a rapid pace. SIMD
instructions operate on registers that have a specific vector
length, which is ever increasing. For example, Intel has
increased the SIMD vector length from 128 bits with SSE
to 512 bits with AVX512. The same trends can be seen with
AMD CPUs. Similarly, ARM processors are now equipped
with variable SIMD length that can be expanded to 1024
bits. As such, past implementations may fall short and incur
performance penalties on current hardware systems. Farrar’s
implementation may require the correction loop be invoked
many more times, given that the speculative execution is
dependent on the SIMD vector length. Wozniak’s implemen-
tation may incur execution penalties if the approach is left
as is and no flexible implementations tailored to each SIMD
architecture is offered. In this work, we propose an approach
to overcome some of these problems. We will show that
our method allows for an efficient kernel implementation that
achieves close to peak performance on Intel, AMD and ARM
processors.

Contributions: The paper makes the following contribu-
tions:

• We show a systematic approach for designing efficient
kernels for computing the maximal score.

• We show that our approach is portable across platforms
and achieves close to peak performance.

• We discuss each design choice and provide a detailed
analysis of the performance results.

II. BACKGROUND

In this section, we give a brief description to DNA and
protein sequences. We then give a brief description of the
Smith-Waterman algorithm (Needleman-Wunsch is similar and
we just hint at the differences), focusing on the anti-diagonal
implementation. We glance on the notion of a similarity
matrix, since this will have an impact on the performance as
outlined in the result section. Finally, we give a brief outline
to SIMD instructions and how they can be used for sequence
alignment computation.

A. DNA and Protein Sequences
Sequence alignment typically operates on two sequences, a

query Q and a reference R. For example, the query sequence
Q of length m is defined as

Q = [q0, q1, . . . , qm−1], (1)

where q0, q1, ..., qm−1 represent the m characters in that
sequence. The reference sequence R is defined similarly. The
characters can take any value in a given an alphabet set Σ.
For DNA, the alphabet Σ = {A,C,G, T,X}, where A, C,
G, T are the four nucleotides and X represents the unknown
character. For proteins, the alphabet Σ has cardinality 20, each
element of the alphabet representing the basic aminoacids.
There are also ”non-standard” amino acids that are added to
the alphabet set increasing Σ’s cardinality to 26 [14].

B. Smith-Waterman and Needleman-Wunsch
The process of aligning two sequences Q of size m and R

of size n is synonym to computing the best match between
the two sequences. Most algorithms like Smith-Waterman and
Needleman-Wunsch create a scoring matrix of size m×n and
populate that matrix based on some predefined rules. Both
algorithms follow the same steps, with some small differences.
In the following paragraphs, we focus only on the Smith-
Waterman algorithm using an affine gap penalty scheme as
outline in Gotoh [11]. Towards the end of the subsection,
we briefly talk about other variants and also the Needleman-
Wunsch algorithm.

As outlined in Figure 1, the Smith-Waterman algorithms
starts by initializing the scoring matrix such that

H[i, j] = 0, ∀i = 0 and j = 0..n (2)
H[i, j] = 0, ∀i = 0..m and j = 0, (3)

where the first row and column of H are initialized with
0. Similarly, the E and F buffers are initialized with 0.
The algorithm first computes values in E and F , used for
determining the gap penalties.The E buffer is updated such
that

E[i] = max






H[i, j − 1] +GAPOPEN

E[i] +GAPEXT

0

∀i = 1..m, (4)

where GAPOPEN and GAPEXT are the user defined penal-
ties for opening a gap in the alignment and for extending the
gap penalty. The F buffer is updated in a similar fashion

F [j] = max






H[i− 1, i] +GAPOPEN

E[j] +GAPEXT

0

∀j = 1..n. (5)

Note that E is update according to the i index and F is updated
according to the j index. Once this values are computed, the
score matrix cell corresponding to i and j is updated such that

H[i, j] = max






H[i− 1, j − 1] + S[Q[i− 1], R[j − 1]]

E[i]

F [j]

0

∀i = 1..m and j = 1..n,
(6)

where S represents a similarity matrix and E and F are the
affine gap penalty values computed before hand.

Computing the comparison between the query Q and ref-
erence R is done through the use of a similarity matrix
S[Q[i−1], R[j−1]], which may be provided or not. For DNA,
the comparison between the characters can be directly done or
a similarity matrix can be provided. The direct comparison can
be more efficient, while the similarity matrix variant requires
some extra processing. This choice can have performance im-
pacts as we will show in the result section. For proteins, there
is only one solution namely that of having a similarity matrix

168

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

and vector lengths provided by the SPARC processor, hence
a specific implementation. Others exist, however most follow
closely to the above examples.

Hardware features are changing at a rapid pace. SIMD
instructions operate on registers that have a specific vector
length, which is ever increasing. For example, Intel has
increased the SIMD vector length from 128 bits with SSE
to 512 bits with AVX512. The same trends can be seen with
AMD CPUs. Similarly, ARM processors are now equipped
with variable SIMD length that can be expanded to 1024
bits. As such, past implementations may fall short and incur
performance penalties on current hardware systems. Farrar’s
implementation may require the correction loop be invoked
many more times, given that the speculative execution is
dependent on the SIMD vector length. Wozniak’s implemen-
tation may incur execution penalties if the approach is left
as is and no flexible implementations tailored to each SIMD
architecture is offered. In this work, we propose an approach
to overcome some of these problems. We will show that
our method allows for an efficient kernel implementation that
achieves close to peak performance on Intel, AMD and ARM
processors.

Contributions: The paper makes the following contribu-
tions:

• We show a systematic approach for designing efficient
kernels for computing the maximal score.

• We show that our approach is portable across platforms
and achieves close to peak performance.

• We discuss each design choice and provide a detailed
analysis of the performance results.

II. BACKGROUND

In this section, we give a brief description to DNA and
protein sequences. We then give a brief description of the
Smith-Waterman algorithm (Needleman-Wunsch is similar and
we just hint at the differences), focusing on the anti-diagonal
implementation. We glance on the notion of a similarity
matrix, since this will have an impact on the performance as
outlined in the result section. Finally, we give a brief outline
to SIMD instructions and how they can be used for sequence
alignment computation.

A. DNA and Protein Sequences
Sequence alignment typically operates on two sequences, a

query Q and a reference R. For example, the query sequence
Q of length m is defined as

Q = [q0, q1, . . . , qm−1], (1)

where q0, q1, ..., qm−1 represent the m characters in that
sequence. The reference sequence R is defined similarly. The
characters can take any value in a given an alphabet set Σ.
For DNA, the alphabet Σ = {A,C,G, T,X}, where A, C,
G, T are the four nucleotides and X represents the unknown
character. For proteins, the alphabet Σ has cardinality 20, each
element of the alphabet representing the basic aminoacids.
There are also ”non-standard” amino acids that are added to
the alphabet set increasing Σ’s cardinality to 26 [14].

B. Smith-Waterman and Needleman-Wunsch
The process of aligning two sequences Q of size m and R

of size n is synonym to computing the best match between
the two sequences. Most algorithms like Smith-Waterman and
Needleman-Wunsch create a scoring matrix of size m×n and
populate that matrix based on some predefined rules. Both
algorithms follow the same steps, with some small differences.
In the following paragraphs, we focus only on the Smith-
Waterman algorithm using an affine gap penalty scheme as
outline in Gotoh [11]. Towards the end of the subsection,
we briefly talk about other variants and also the Needleman-
Wunsch algorithm.

As outlined in Figure 1, the Smith-Waterman algorithms
starts by initializing the scoring matrix such that

H[i, j] = 0, ∀i = 0 and j = 0..n (2)
H[i, j] = 0, ∀i = 0..m and j = 0, (3)

where the first row and column of H are initialized with
0. Similarly, the E and F buffers are initialized with 0.
The algorithm first computes values in E and F , used for
determining the gap penalties.The E buffer is updated such
that

E[i] = max






H[i, j − 1] +GAPOPEN

E[i] +GAPEXT

0

∀i = 1..m, (4)

where GAPOPEN and GAPEXT are the user defined penal-
ties for opening a gap in the alignment and for extending the
gap penalty. The F buffer is updated in a similar fashion

F [j] = max






H[i− 1, i] +GAPOPEN

E[j] +GAPEXT

0

∀j = 1..n. (5)

Note that E is update according to the i index and F is updated
according to the j index. Once this values are computed, the
score matrix cell corresponding to i and j is updated such that

H[i, j] = max






H[i− 1, j − 1] + S[Q[i− 1], R[j − 1]]

E[i]

F [j]

0

∀i = 1..m and j = 1..n,
(6)

where S represents a similarity matrix and E and F are the
affine gap penalty values computed before hand.

Computing the comparison between the query Q and ref-
erence R is done through the use of a similarity matrix
S[Q[i−1], R[j−1]], which may be provided or not. For DNA,
the comparison between the characters can be directly done or
a similarity matrix can be provided. The direct comparison can
be more efficient, while the similarity matrix variant requires
some extra processing. This choice can have performance im-
pacts as we will show in the result section. For proteins, there
is only one solution namely that of having a similarity matrix

168

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

and vector lengths provided by the SPARC processor, hence
a specific implementation. Others exist, however most follow
closely to the above examples.

Hardware features are changing at a rapid pace. SIMD
instructions operate on registers that have a specific vector
length, which is ever increasing. For example, Intel has
increased the SIMD vector length from 128 bits with SSE
to 512 bits with AVX512. The same trends can be seen with
AMD CPUs. Similarly, ARM processors are now equipped
with variable SIMD length that can be expanded to 1024
bits. As such, past implementations may fall short and incur
performance penalties on current hardware systems. Farrar’s
implementation may require the correction loop be invoked
many more times, given that the speculative execution is
dependent on the SIMD vector length. Wozniak’s implemen-
tation may incur execution penalties if the approach is left
as is and no flexible implementations tailored to each SIMD
architecture is offered. In this work, we propose an approach
to overcome some of these problems. We will show that
our method allows for an efficient kernel implementation that
achieves close to peak performance on Intel, AMD and ARM
processors.

Contributions: The paper makes the following contribu-
tions:

• We show a systematic approach for designing efficient
kernels for computing the maximal score.

• We show that our approach is portable across platforms
and achieves close to peak performance.

• We discuss each design choice and provide a detailed
analysis of the performance results.

II. BACKGROUND

In this section, we give a brief description to DNA and
protein sequences. We then give a brief description of the
Smith-Waterman algorithm (Needleman-Wunsch is similar and
we just hint at the differences), focusing on the anti-diagonal
implementation. We glance on the notion of a similarity
matrix, since this will have an impact on the performance as
outlined in the result section. Finally, we give a brief outline
to SIMD instructions and how they can be used for sequence
alignment computation.

A. DNA and Protein Sequences
Sequence alignment typically operates on two sequences, a

query Q and a reference R. For example, the query sequence
Q of length m is defined as

Q = [q0, q1, . . . , qm−1], (1)

where q0, q1, ..., qm−1 represent the m characters in that
sequence. The reference sequence R is defined similarly. The
characters can take any value in a given an alphabet set Σ.
For DNA, the alphabet Σ = {A,C,G, T,X}, where A, C,
G, T are the four nucleotides and X represents the unknown
character. For proteins, the alphabet Σ has cardinality 20, each
element of the alphabet representing the basic aminoacids.
There are also ”non-standard” amino acids that are added to
the alphabet set increasing Σ’s cardinality to 26 [14].

B. Smith-Waterman and Needleman-Wunsch
The process of aligning two sequences Q of size m and R

of size n is synonym to computing the best match between
the two sequences. Most algorithms like Smith-Waterman and
Needleman-Wunsch create a scoring matrix of size m×n and
populate that matrix based on some predefined rules. Both
algorithms follow the same steps, with some small differences.
In the following paragraphs, we focus only on the Smith-
Waterman algorithm using an affine gap penalty scheme as
outline in Gotoh [11]. Towards the end of the subsection,
we briefly talk about other variants and also the Needleman-
Wunsch algorithm.

As outlined in Figure 1, the Smith-Waterman algorithms
starts by initializing the scoring matrix such that

H[i, j] = 0, ∀i = 0 and j = 0..n (2)
H[i, j] = 0, ∀i = 0..m and j = 0, (3)

where the first row and column of H are initialized with
0. Similarly, the E and F buffers are initialized with 0.
The algorithm first computes values in E and F , used for
determining the gap penalties.The E buffer is updated such
that

E[i] = max






H[i, j − 1] +GAPOPEN

E[i] +GAPEXT

0

∀i = 1..m, (4)

where GAPOPEN and GAPEXT are the user defined penal-
ties for opening a gap in the alignment and for extending the
gap penalty. The F buffer is updated in a similar fashion

F [j] = max






H[i− 1, i] +GAPOPEN

E[j] +GAPEXT

0

∀j = 1..n. (5)

Note that E is update according to the i index and F is updated
according to the j index. Once this values are computed, the
score matrix cell corresponding to i and j is updated such that

H[i, j] = max






H[i− 1, j − 1] + S[Q[i− 1], R[j − 1]]

E[i]

F [j]

0

∀i = 1..m and j = 1..n,
(6)

where S represents a similarity matrix and E and F are the
affine gap penalty values computed before hand.

Computing the comparison between the query Q and ref-
erence R is done through the use of a similarity matrix
S[Q[i−1], R[j−1]], which may be provided or not. For DNA,
the comparison between the characters can be directly done or
a similarity matrix can be provided. The direct comparison can
be more efficient, while the similarity matrix variant requires
some extra processing. This choice can have performance im-
pacts as we will show in the result section. For proteins, there
is only one solution namely that of having a similarity matrix

168

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The anti-diagonal/wavefront implementation used in
sequence alignment codes. The computation moves in the anti-
diagonal dimension, since all the terms are independent and
the locations can be done in parallel. The red arrows specify
the direction in which the data is being accessed.

as outlined in [14]. In the result section, we will outline these
choices and we will discuss how performance changes. We
provide an implementation for DNA that does the comparison,
we then amend the code and allow for a similarity matrix to be
provided. We show how the code and the performance changes
for both DNA and protein implementations.

In the above description, we focused on the Smith-
Waterman algorithm that uses an affine gap penalty. Alter-
natively, a linear penalty can be used, in which case the
computation becomes simpler since some of the computation
for updating E and F is not needed. While we focus on
the affine gap implementation, extending our approach to this
version is straightforward. Similar extensions can be applied
to obtain the Needleman-Wunsch algorithm for performing
global alignment between two sequences. The global align-
ment algorithm follows similar steps. The only differences are
1) the way in which the first row, first column, E and F are
initialized and 2) the trace-back location. While for Smith-
Waterman the location of the starting and ending points of
the best match are unknown, for Needleman-Wunsch the start
point is always in the top-left corner of H and the end point
is in the bottom-right corner.

C. Improvements to the Alignment Algorithms

The steps to compute the maximal score are common
between both local and global alignment algorithms. To the
astute reader, Equations 4, 5, 6 specify the computation of
a stencil operations, where the current H[i, j] value depends
on the H[i− 1, j], H[i− 1, j − 1] and H[i, j − 1] values. In
addition, given this dependency, it is important to note that
there is a dependence in the row and column dimensions of
the scoring matrix H . This dependency makes it harder for
one to improve the code using SIMD instructions. Farrar’s

Fig. 3: Example of SIMD instructions applied on three vector
registers. The first instructions applies the same max operation
between vec0reg and vec1reg. The second instruction adds the
result of the max operation to the data stored in vec3reg. The
same operations are applied on different data points.

implementation [12] breaks the dependency by executing
the operations speculatively, requiring a correction loop. An
alternative approach used frequently in the stencil community,
is to skew the iteration space and compute in the anti-diagonal
dimension as shown in Figure 2. All the elements on the anti-
diagonal are independent and can be processed in parallel.
This notion is exploited in the papers [13], [15].

Computation does not need the entire H matrix to be
stored in memory. As shown in the works [13], [15], only
two anti-diagonals of size 2max(m,n) are needed to store
the intermediate results. As shown in Figure 2, some extra
one dimensional temporaries are needed to keep track of
the maximum values and their location. This does not affect
the Needleman-Wunsch algorithm, since the start and end
locations are known. Not storing the scoring matrix does affect
the Smith-Waterman algorithm, since this algorithm does know
the locations of the start and end of the best match. Solutions
are offered by either reverse the sequences and recomputing a
maximal score from the previously determined point as shown
in [16], or one could use a divide and conquer method as
shown in [17] to compute the start position. In both scenarios,
the same computation kernel is required.

D. Data Parallelism and SIMD Instructions

Skewing the iteration space exposes parallelism in the anti-
diagonal dimension. As shown in Figure 2, all the elements on
the anti-diagonal can be processed in parallel. This fits well
with the Single Instruction Multiple Data (SIMD) paradigm,
where the same instruction is applied in parallel on different
data points as shown in Figure 3. SIMD units are prevalent
to most modern CPUs. Intel and AMD offer support for
SSE, AVX and AVX512 SIMD instructions. ARM started with
NEON extensions and recently has introduced variable length
SVE instructions sets. All SIMD instructions allow different
granularities at which the operations can be performed. For
example, an SSE 128 bit allows for operations to be applied on
16 char values, 8 short values or 4 integer values. In addition,
SIMD units allow for data to be shuffle and manipulated.

169

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

 (a) (b)

Fig. 2 Dynamic programming approaches for NW and SW algorithms [2]: (a) the update and trace-back steps, (b)
maximum possible parallelism on anti-diagonal elements (MID), which is not suitable for GPU

In 2019, Jararweh et al. [10] proposed three sets of parallel implementations of SW and NW algorithm
are presented using a mixture of specialized software and hardware solutions: POSIX Threads-based,
SIMD Extensions-based and a GPU-based implementations.

There exists some works like the one by Lan et al. [11] to make use of hybrid methods of parallelization
to exploit both CPU and GPU capabilities to increase the input sequence length. Lee et al., [12] also
proposed a mixed serial-parallel method to implement Needleman-Wunsch algorithm. They introduced
the heterogeneous anti-diagonal approach, which benefits from the interaction between the serial
implementation on CPU and the parallel implementation on GPU.

On the other hand, Cali et al. [13] proposed a co-design of hardware and software to develop a new
hardware accelerator to speed-up their approximate string matching-based sequence alignment
method, while Popovici et al. [doru] focus on utilizing SIMD instructions and the AVX feature of CPUs
to create a versatile implementation for crucial alignment kernels and optimize both local and global
sequence algorithms.

Luk et al. [luk] presented an enhancement to the X-Drop algorithm for sequence alignment by
introducing a graph-based partitioning and a batch system using queues, aiming to enhance load
balancing. Theirimplementation demonstrates a 10x acceleration compared to a leading GPU
implementation and up to 4.65x improvement compared to CPU performance.

2.1. Motivation and current challenges
Traditional methods for genome assembly and sequence alignment, while effective, encounter
challenges in handling the increasing scale and complexity of genetic data. As genomic sequencing
technologies continue to advance, the limitations of existing methodologies become more pronounced.
Hyper-scale sequence alignment problems, such as MSA, pose significant computational challenges
due to the sheer volume and length of genetic sequences. The current methods struggle to efficiently
navigate and process sparse patterns within these sequences, hindering the speed and scalability
required for modern genomic analyses. Our motivation stems from the need to address these
challenges and push the boundaries of computational genomics.
Fundamentally, the limitations and challenges in the literature can be classified into two coarse classes:
1) algorithmic limitations and 2) hardware limitations. Most recent works try to overcome the algorithmic
limitations, since any change to the hardware requires support by hardware manufacturers and thus
leads to much more difficulties to develop new special-purpose hardware.
1) Algorithmic limitations are raised mainly because the problem is intrinsically considered as a non-
dense compute problem, due to the nature of dynamic programming approaches. In particular:

• From the computation requirements perspective, the problem can show a sparse behavior since there
are irregular pattern of parallelism in each iteration.

• The data dependency amongst different iterations of the derived algorithms is a fundamental limiting
factor for parallel algorithms.

• The need to traceback and re-generate the result aligned sequence.
• The support for long-read computations: most methods limit the algorithm to work on smaller chunks of

the input algorithm, since working on the whole sequence requires more available resources.
• Lack of scalability on the input sequence length.

2) Hardware limitations can be specified as
• Limited compute parallelism: currently, only text-level parallelism is viable for this problem.
• Limited memory bandwidth available for GPU implementations.
• Lack of scalability on the number of compute resources.

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU in Bioinformatics
Motivations: NW and SW

31

• X-Drop Method [1]
• reduces the quadratic cost by dynamically searching only for a high-quality alignment and

stopping the computation early when a good alignment is impossible

• Good for long-read sequencing

• Seems to be more scalable than NW and SW

 (a) (b)

Fig. 2 Dynamic programming approaches for NW and SW algorithms [2]: (a) the update and trace-back steps, (b)
maximum possible parallelism on anti-diagonal elements (MID), which is not suitable for GPU

In 2019, Jararweh et al. [10] proposed three sets of parallel implementations of SW and NW algorithm
are presented using a mixture of specialized software and hardware solutions: POSIX Threads-based,
SIMD Extensions-based and a GPU-based implementations.

There exists some works like the one by Lan et al. [11] to make use of hybrid methods of parallelization
to exploit both CPU and GPU capabilities to increase the input sequence length. Lee et al., [12] also
proposed a mixed serial-parallel method to implement Needleman-Wunsch algorithm. They introduced
the heterogeneous anti-diagonal approach, which benefits from the interaction between the serial
implementation on CPU and the parallel implementation on GPU.

On the other hand, Cali et al. [13] proposed a co-design of hardware and software to develop a new
hardware accelerator to speed-up their approximate string matching-based sequence alignment
method, while Popovici et al. [doru] focus on utilizing SIMD instructions and the AVX feature of CPUs
to create a versatile implementation for crucial alignment kernels and optimize both local and global
sequence algorithms.

Luk et al. [luk] presented an enhancement to the X-Drop algorithm for sequence alignment by
introducing a graph-based partitioning and a batch system using queues, aiming to enhance load
balancing. Theirimplementation demonstrates a 10x acceleration compared to a leading GPU
implementation and up to 4.65x improvement compared to CPU performance.

2.1. Motivation and current challenges
Traditional methods for genome assembly and sequence alignment, while effective, encounter
challenges in handling the increasing scale and complexity of genetic data. As genomic sequencing
technologies continue to advance, the limitations of existing methodologies become more pronounced.
Hyper-scale sequence alignment problems, such as MSA, pose significant computational challenges
due to the sheer volume and length of genetic sequences. The current methods struggle to efficiently
navigate and process sparse patterns within these sequences, hindering the speed and scalability
required for modern genomic analyses. Our motivation stems from the need to address these
challenges and push the boundaries of computational genomics.
Fundamentally, the limitations and challenges in the literature can be classified into two coarse classes:
1) algorithmic limitations and 2) hardware limitations. Most recent works try to overcome the algorithmic
limitations, since any change to the hardware requires support by hardware manufacturers and thus
leads to much more difficulties to develop new special-purpose hardware.
1) Algorithmic limitations are raised mainly because the problem is intrinsically considered as a non-
dense compute problem, due to the nature of dynamic programming approaches. In particular:

• From the computation requirements perspective, the problem can show a sparse behavior since there
are irregular pattern of parallelism in each iteration.

• The data dependency amongst different iterations of the derived algorithms is a fundamental limiting
factor for parallel algorithms.

• The need to traceback and re-generate the result aligned sequence.
• The support for long-read computations: most methods limit the algorithm to work on smaller chunks of

the input algorithm, since working on the whole sequence requires more available resources.
• Lack of scalability on the input sequence length.

2) Hardware limitations can be specified as
• Limited compute parallelism: currently, only text-level parallelism is viable for this problem.
• Limited memory bandwidth available for GPU implementations.
• Lack of scalability on the number of compute resources.

Space E�icient Sequence Alignment for SRAM-Based Computing:
X-Drop on the Graphcore IPU

Luk Burchard∗
luk@simula.no

Simula Research Laboratory
Oslo, Norway

Max Xiaohang Zhao∗
max.zhao@charite.de

Charité Universitätsmedizin
Berlin, Germany

Johannes Langguth
langguth@simula.no

Simula Research Laboratory
Oslo, Norway

Aydın Buluç
abuluc@lbl.gov

Lawrence Berkeley National
Laboratory

Berkeley, CA, USA

Giulia Guidi
gg434@cornell.edu
Cornell University
Ithaca, NY, USA

ABSTRACT
Dedicated accelerator hardware has become essential for process-
ing AI-based workloads, leading to the rise of novel accelerator
architectures. Furthermore, fundamental di�erences in memory
architecture and parallelism have made these accelerators targets
for scienti�c computing.

The sequence alignment problem is fundamental in bioinformat-
ics; we have implemented the- -Drop algorithm, a heuristic method
for pairwise alignment that reduces search space, on the Graphcore
Intelligence Processor Unit (IPU) accelerator. The- -Drop algorithm
has an irregular computational pattern, which makes it di�cult to
accelerate due to load balancing.

Here, we introduce a graph-based partitioning and queue-based
batch system to improve load balancing. Our implementation achieves
10⇥ speedup over a state-of-the-art GPU implementation and up
to 4.65⇥ compared to CPU. In addition, we introduce a memory-
restricted - -Drop algorithm that reduces memory footprint by
55⇥ and e�ciently uses the IPU’s limited low-latency SRAM. This
optimization further improves strong scaling by 3.6⇥.
1 INTRODUCTION
Today’s architectures are complex but often suboptimal for modern
irregular computation, being overprovisioned for arithmetic com-
putation and challenging the programmer to cope with the high
cost of moving data. A clear insight into this problem is provided
by the Top500 list, in which the world’s 10 fastest machines achieve
peak performance of up to 83% in the computationally intensive
LINPACK benchmark but no more than 3% peak performance in the
High-Performance Conjugate Gradient (HPCG) benchmark, which
involves irregular computation [29].

In the last decade, the Graphics Processing Unit (GPU) has
emerged as a leading architecture for high-performance computing

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607094

(HPC) challenges involving dense linear algebra and scienti�c com-
puting [44]. However, GPUs are single instruction multiple data
(SIMD) architectures, and this can be a limitation for computational
challenges that su�er from high load imbalance, as is often the
case with data analytics and general computation. They require
regular data access and work pattern to reach their theoretical peak
performance [22]. A general-purpose processor such as a CPU is
better suited for non-uniform data access but does not provide
the high instruction throughput achieved by GPUs, since CPUs
are optimized for latency rather than throughput. Therefore, new
architectures are needed for HPC that can provide more �exible
acceleration like CPUs while providing high throughput like GPUs.

Recently, the Graphcore Intelligence Processing Unit (IPU), a
massively parallel multiple instructionmultiple data (MIMD) SRAM-
based processor designed as an AI accelerator, has emerged as a po-
tential solution to irregular computation by combining �ne-grained
memory access with wide parallelism [19]. While processors con-
nected to external RAM are constrained by the von Neumann bot-
tleneck, SRAM-based computing eschews complex memory hierar-
chies by providing su�cient SRAM storage on the processing chip
to �t a problem instance [30]. IPUs were developed for AI applica-
tions but showed potential for other applications, such as for the
breadth-�rst search algorithm, stencil computations, and cardiac

(a) Banded (b) X-Drop

Figure 1: On the left, the alignment (banded algorithm) is
forced to stay within the banded area regardless of the score,
missing the optimal alignment (gray). On the right (- -Drop
algorithm), when the score (yellow-blue) - goes below the
current best score, the search is terminated (red boundary),
and the optimal alignment (black) is returned.

1

Space E�icient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU SC ’23, November 12–17, 2023, Denver, CO, USA

between tiles via the IPU exchange network, which has an aggregate
bandwidth of 7.83 TB /s (GC200) or 10.9 TB/s (BOW). The IPU
alternates between computation and communication in a bulk-
synchronous parallel (BSP) [43] manner with no overlap between
phases.

Since the IPU is an accelerator that does not run its own operating
system, it is dependent on a host machine. Unlike GPUs, whose
CPU host is usually within the same machine, a group of IPUs is
connected to the host node via 100 Gb/s Ethernet. This means that
the number of IPUs per host can vary greatly.

Our GC200 test system contains 64 IPUs, but only one dual-
socket Xeon-based server. Consequently, host-to-device transfers
can become a bottleneck. Four IPUs are used together in an IPU-
M2000 blade, which in turn can be combined into larger systems
called IPU-PODs. The M2000 also contains up to 448 GB of DRAM
memory, which it can access at a rate of about 20GB/s. This memory,
while too slow for most computations, can be used to bu�er data
from host-to-device transfers. The IPUs themselves are connected in
a ladder topology with a bisection bandwidth of 128 GB/s. In terms
of power consumption, two IPUs are comparable to a powerful GPU
like the NVIDIA A100 or a pair of moderately powerful CPUs [20].

2.1.2 Programmability. Unlike other hardware accelerators, the
IPU is a distributed memory system consisting of multiple tiles that
use a direct memory write technique for communication.

Poplar is the C++ framework used to program the IPU at the
lowest level. It is inspired by TensorFlow and the data�ow program-
ming model, as high-level program �ow is de�ned as a data�ow
graph, where we can de�ne a state as a Tensor and a transfer func-
tion as a Vertex. Code that executes in a vertex is called a codelet.
One can think of a codelet as analogous to a CUDA kernel. To syn-
chronize computation and data accesses, the IPU hardware supports
the BSP programming model, which divides algorithm execution
into level-synchronous supersteps with three phases: Compute,
Exchange, and Synchronize.

In Poplar, each Tensor and Vertex must be mapped to a tile. The
programmer must de�ne input and output Tensor for the Vertex.
The compiler uses the data�ow graph and vertex mapping to create
a synchronized data exchange following the BSP pattern. A higher-
level control �ow can be introduced to select the next BSP superstep
to execute. Unlike MPI, the data exchange does not need to be
explicitly programmed.

2.2 X-Drop Pairwise Alignment
The comparison of biological sequences is important for a deeper
understanding of the role and function of genetic areas and pro-
tein structures, but also for the construction of the genomic se-
quence itself. The genome consists of strings of nucleotides (ade-
nine, thymine, guanine, cytosine), which code for protein sequences
and contain additional regulatory information. Genomes cannot be
sequenced in their entire length; current sequencing technologies
can only read and output sequences that are signi�cantly shorter
than the entire genome. Therefore, we need sequence alignment
to reconstruct whole genomes. For short-read technologies such
as Illumina, the average sequence length is 100-250 nucleotides
(or base pairs, bp). In newer long-read technologies such as Paci�c
Biosciences and Oxford Nanopore, the average read length can be

(a) (b) (c)

Figure 2: The red path is the optimal alignment, the gray area
is calculated values, and the white area is non-calculated
values. Due to the - -Drop condition, the white nonzeros
contain a score of �1. Panel (a) shows an iteration with - =
10, (b) with - = 20, and (c) with - = 1.

more than 20,000 bp and up to several megabases, enabling the
generation of highly continuous bacterial genomes [39]. Long-read
technologies are highly promising as they can further improve our
understanding of genomic structure [35]. Yet, they also present new
computational challenges due to their longer length and higher
error rates.

The optimal sequence alignment between two sequences can be
found in quadratic time and linear space [18, 33] if we use the clas-
sical Smith-Waterman or Needleman-Wunsch algorithm for local
and global alignment, respectively. The sequence alignment prob-
lem is de�ned as follows. Given two sequences H = ⌘1,⌘2, . . . ,⌘< ,
V = E1, E2, . . . , E= , with |H | = <, |V| = = we want to �nd the
best scoring set of changes to transform sequence H into V . If
we assume that the sequences are homologous, i.e. that they are
evolutionarily related, the number of resulting changes is small.
The alignment is done by dynamic programming, where we de�ne
a dense scoring matrix ((8, 9), with 8  =, 9  <. The matrix (is
�lled from the upper left corner and extended to the lower right
corner. In each nonzero cell of the DP matrix, we store the best
score for the alignment of pre�xes V1 . . .V8 and H1 . . .H9 . This
score is calculated based on the combination of matching or mis-
matching E8 and ⌘ 9 , as well as the alignment history of the previous
three scores in the dynamic programming matrix, as described in
Equation 1.

((8, 9) =
8>>><
>>>:

((8 � 1, 9 � 1) + (8<(E8 ,⌘ 9) if 8 > 0, 9 > 0,
((8, 9 � 1) + gap if 9 > 0
((8 � 1, 9) + gap if 8 > 0

(1)

(8<(E8 ,⌘ 9) is an arbitrary scoring function used to measure the sim-
ilarity between a pair. In the case of DNA, (8<(E8 ,⌘ 9) is a positive
value if E8 and ⌘ 9 match (i.e., no change is required), or a negative
value if they do not, and gap is also a negative value, meaning that
either E8 or ⌘ 9 has a symbol inserted or deleted at that position: The
goal is to �nd a path of changes in (that maximizes the score and is
optimal for aligningH andV . The scoring function assigns higher
scores to likely biologically related sequences and lower scores to
less likely related sequences.

In real-world scenarios, we can often make a reasonable as-
sumption about where to �nd the optimal alignment on the two
sequences, and this can lead to heuristics that can signi�cantly
reduce time and space complexity.

3

[1] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. 2000. A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology, 203–214

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU in Bioinformatics
X-Drop Sequence Alignment Implementation on IPUs

32

Master Project work by Jonathan Hirsch, August 2024 - …

• Memory is the most limitation on the IPU

• The idea first introduced by Burchard et al, in [1] for
• Limited SRAM-based computation

• Multi-IPU machines

• Clusters of IPU machines

• Long input sequences

[1] Luk Burchard, Max Xiaohang Zhao, Johannes Langguth, Aydın Buluç, and Giulia Guidi. 2023. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '23). Association for Computing Machinery, New York, NY, USA, Article
33, 1–16. https://doi.org/10.1145/3581784.3607094

Space E�icient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU SC ’23, November 12–17, 2023, Denver, CO, USA

Ite
ra

tio
n

iteration

Standard

antidiaglen
 worklen

Memory-Restricted
Memory View

Work View

fre
ed

allo
cat

ed

Figure 3: The antidiagonal length is X = <8=(|H |, |V|).
The memory-restricted version allocates work memory of
max: |*: � !: |  X1  X . The left side illustrates the standard
algorithm (3X memory). The right side illustrates our algo-
rithm (2X1 memory).

the overlap detection phase has the form of ASAT. Once the out-
put matrix is formed, PASTIS computes an alignment step on each
non-zero, similar to ELBA. PASTIS has two alignment modes: seed-
and-extend with - -Drop and Smith-Waterman alignment. Using
- -Drop, PASTIS initiates the alignment from the :-mer match.

Both PASTIS and ELBA defer implementation of - -Drop to the
Library for Sequence Analysis (SeqAn) C++ library for CPU [37].
ELBA also provides support for the GPU-based - -Drop alignment
called LOGAN [49]. LOGAN does not support protein alignment.

3 ALGORITHM
In this section, we describe the algorithm we implemented on the
Graphcore IPU and the algorithmic changes we made to make the
computation more suitable for the IPU.

One of the major challenges in implementing sequence align-
ment on specialized hardware is the memory requirement since
storing the entire dynamic matrix can exceed the available memory.
In Section 2.2, we described how it is possible to reduce the memory
footprint of the scoring matrix (by storing only three antidiagonal
phases (the previous two phases and the current phase :) to tra-
verse (, instead of storing the entire matrix. It can be observed that
an antidiagonal can never become larger than X =<8=(|H |, |V|),
whereH andV are the sequences involved in the alignment. To
limit the computational workload, it is common to use a lower !:
and an upper bound*: for the antidiagonal, where |*: � !: | is the
length of the antidiagonal in iteration : [51]. The boundaries are
chosen to restrict each antidiagonal to only include the working
area of the algorithm. In (, any value outside the antidiagonal is
�1 (i.e. triggered - -Drop termination).

To store three antidiagonal phases, we need 3X of memory for
each alignment run. This memory requirement is too high for the

IPU. Therefore, we address this problem with a two-step approach.
First, we reformulate the algorithm using the technique found
in [12] to store only two antidiagonal phases. This is possible by
using a temporary variable since the values in the antidiagonal :
and : � 2 are one iteration o�set accessed and written. In addition,
we propose to use a band in the iteration, which is di�erent from the
classical banded algorithm shown in Figure 1 on the left, because
the band is not static in space (i.e., it does not remain �xed around
the diagonal), but is constantly realigned to the active iteration
position that stores the best score. It is possible to observe that even
though the antidiagonal is fully allocated (X), only a small part of
it is accessed during each phase : , since |*: � !: |  X . Therefore,
in our implementation, we assume a bound length X1 , which is the
total working length F = max: |*: � !: | of the antidiagonal to
keep F  X1  X . Thus, we use the restricted X1 to constrain the
algorithm in memory by placing antidiagonals in the active work-
ing area of the algorithm, resulting in a memory allocation of 2X1 .
Figure 3 on the left illustrates the antidiagonal length (black dashed
line) for the original algorithm, while the middle one illustrates the
antidiagonal length for our proposed memory-restricted version.
The gray area is part of the scoring matrix (�lled by the - -Drop
algorithm. The right panel in Figure 3 illustrates a reinterpretation
of the iteration space of the working memory region. The choice of
an appropriate X1 value is related to the error rate of the sequence
and the - -Drop factor. Both high error rates and large - increase
the working lengthF , as shown in Section 6.1.

Algorithm 1 describes our memory-restricted algorithm using
only two antidiagonals �1,�2 of length X1 .) is the best score
found by the algorithm, while !,* are the lower and upper iter-
ation boundaries, respectively. It is worth remembering that the
algorithm for aligning - -Drop is semi-global; one side of the ex-
tremities of the two sequences is forced to align while the other
side is left free. This is the case because each alignment results
from splitting two sequences into four sequences (i.e., two for the
left extension and two for the right extension) using the :-mer
seed match information. To perform the forward alignment (right
extension), we can access the sequences in a natural access pattern
from left to right. For the backward alignment (left extension), we
use an index transformation >? (·) that produces either forward
or backward accesses to H and V . This way, we do not have to
completely reverse the sequences to perform the alignment with
the left extension. The current diagonal iteration is given by : . The
algorithm terminates when ! and* converge, i.e., when no values
greater than �1 remain in the working set of the algorithm.

4 IMPLEMENTATION
In this section, we describe the implementation of the memory-
restricted - -Drop algorithm on the Graphcore IPU accelerator.

Our implementation is designed for analyzing large sequences of
both protein and DNA, ranging from 1K to 25K in length. It can han-
dle smaller sequences, however, algorithms like Smith-Waterman
may be better suited for them. Longer sequences can also be com-
pared but limited tile memory may prevent all threads from being
utilized. This raises two challenges that we address in this work.
First, the memory requirement for each alignment is large, given
that a single pairwise alignment is executed on a single tile of the

5

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

IPU in Bioinformatics
MIMD Kernels for Sequence Alignment on IPUs

33

Master Project work and thesis by Jeremias Kunz, August 2024 - …

• The project is defined based on a recent work by Popovici [1]

• Target hardware: CPUs with SSE and AVX instructions
to implement SIMD solutions for SIMD vector processing

• The aim is to extend the work on the IPU

• Make uses of the sparsity

[1] D. T. Popovici et al., "Designing Efficient SIMD Kernels for High Performance Sequence Alignment," 2023 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), St. Petersburg, FL, USA, 2023, pp. 167-176, doi: 10.1109/IPDPSW59300.2023.00038

Fig. 8: Packing multiple reference sequences in a block inter-
leaved fashion. The same query sequence is compared against
multiple reference implementations. This implementation can
be provide better results for higher SIMD vector lengths
that have multiple lanes and offer different types of shuffle
instructions.

the case where two reference sequences are compared against
the same query sequence. Note that some buffers need to be
doubled. For example, we need two S and two E′ buffers.
In addition, note that b elements from the first reference are
interleaved with b elements from the second reference. The
data is packed up-front. Packing and reorganizing the data as
shown in [18] has been shown to improve performance. While
the work in the paper focused on matrix-matrix multiplication
and Fourier transforms, the same principles can be applied for
the alignment case. To be more exact, the packing required for
the sequence alignment is very similar to the matrix-matrix
multiplication case, since the data is packed up-front before
the computation. Using the same structure of the computation,
we can change the code to perform these operations.

Figure 8 focused on one example. However, there are
different cases that can be obtained. For example,

• one-to-one-single - one query is compared against one
reference; this implementation was described in sec-
tion III-B;

• one-to-one-multiple - multiple queries are compared
against multiple references similar to a dot-product; this
requires multiple queries and multiple references to be
packed;

• one-to-many - one query is compared against multiple
references; this method packs multiple references as
outlined in Figure 8;

• many-to-one - multiple queries are compared against a
single reference; this implementation is similar to the one-
to-many, however the queries are packed as opposed to
the references.

All these versions can be obtained from the same implemen-

Fig. 9: Performing the comparison between the query and
reference sequences when using a similarity matrix. The
operation requires a sparse-gather operation give the set of
indices stored in Q and R as outlined in the top part. The
bottom part of the figure shows an approach to emulating the
sparse-gather operations using block operations and table look-
ups. The second approach fits well with SIMD instruction sets.

tation with tweaks to the packing routines and some changes
to the SIMD instructions. Having these possibilities can help
when changing the SIMD vector length. Recall that AVX and
AVX512 are built using 128 bit SIMD lanes. Any shuffle
operation within the lane is cheap, while any shuffle operations
across the lanes is expensive. We will show performance
results and comparisons between implementations in the fol-
lowing section.

D. With and Without a Similarity Matrix
In Figure 7, line 7 performs a comparison between b

elements of the query sequence and b elements of the reference
sequence. The comparison can be done as a direct character
by character comparison such that:

t0,i = (qbi == rbi) ? M : NM, ∀i = 0..b− 1, (8)

where qbi represents the character of the query sub-sequence
of length b, rbi represents the character of the reference
sub-sequence of length b, and M and NM are two user
defined scores for matching and not matching, respectively.
The code snippet can be inserted in the code in Figure 7. This
implementation can easily be written using SIMD instructions.
This implementation works for DNA characters and offers the
best performance as we will show in the next section.

On the flip side, a similarity matrix can be provided to
enable the comparison such that

t0,i = SM [qbi , r
b
i], ∀i = 0..b− 1, (9)

where SM is the symmetric similarity matrix. For DNA SM
can be a 5×5 matrix, and for proteins SM is a 26×26 matrix.
The query and reference sub-sequences perform a sparse-
gather operation within SM as shown in Figure 9. Current
CPUs provide SIMD support, however the performance is not
as expected. An alternative approach is to emulate the sparse-
gather using a bunch of SIMD instructions as shown in the
bottom part in Figure 9. The values from the sub-sequence R
are used to index into the rows of SM . The entire rows are

172

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Packing multiple reference sequences in a block inter-
leaved fashion. The same query sequence is compared against
multiple reference implementations. This implementation can
be provide better results for higher SIMD vector lengths
that have multiple lanes and offer different types of shuffle
instructions.

the case where two reference sequences are compared against
the same query sequence. Note that some buffers need to be
doubled. For example, we need two S and two E′ buffers.
In addition, note that b elements from the first reference are
interleaved with b elements from the second reference. The
data is packed up-front. Packing and reorganizing the data as
shown in [18] has been shown to improve performance. While
the work in the paper focused on matrix-matrix multiplication
and Fourier transforms, the same principles can be applied for
the alignment case. To be more exact, the packing required for
the sequence alignment is very similar to the matrix-matrix
multiplication case, since the data is packed up-front before
the computation. Using the same structure of the computation,
we can change the code to perform these operations.

Figure 8 focused on one example. However, there are
different cases that can be obtained. For example,

• one-to-one-single - one query is compared against one
reference; this implementation was described in sec-
tion III-B;

• one-to-one-multiple - multiple queries are compared
against multiple references similar to a dot-product; this
requires multiple queries and multiple references to be
packed;

• one-to-many - one query is compared against multiple
references; this method packs multiple references as
outlined in Figure 8;

• many-to-one - multiple queries are compared against a
single reference; this implementation is similar to the one-
to-many, however the queries are packed as opposed to
the references.

All these versions can be obtained from the same implemen-

Fig. 9: Performing the comparison between the query and
reference sequences when using a similarity matrix. The
operation requires a sparse-gather operation give the set of
indices stored in Q and R as outlined in the top part. The
bottom part of the figure shows an approach to emulating the
sparse-gather operations using block operations and table look-
ups. The second approach fits well with SIMD instruction sets.

tation with tweaks to the packing routines and some changes
to the SIMD instructions. Having these possibilities can help
when changing the SIMD vector length. Recall that AVX and
AVX512 are built using 128 bit SIMD lanes. Any shuffle
operation within the lane is cheap, while any shuffle operations
across the lanes is expensive. We will show performance
results and comparisons between implementations in the fol-
lowing section.

D. With and Without a Similarity Matrix
In Figure 7, line 7 performs a comparison between b

elements of the query sequence and b elements of the reference
sequence. The comparison can be done as a direct character
by character comparison such that:

t0,i = (qbi == rbi) ? M : NM, ∀i = 0..b− 1, (8)

where qbi represents the character of the query sub-sequence
of length b, rbi represents the character of the reference
sub-sequence of length b, and M and NM are two user
defined scores for matching and not matching, respectively.
The code snippet can be inserted in the code in Figure 7. This
implementation can easily be written using SIMD instructions.
This implementation works for DNA characters and offers the
best performance as we will show in the next section.

On the flip side, a similarity matrix can be provided to
enable the comparison such that

t0,i = SM [qbi , r
b
i], ∀i = 0..b− 1, (9)

where SM is the symmetric similarity matrix. For DNA SM
can be a 5×5 matrix, and for proteins SM is a 26×26 matrix.
The query and reference sub-sequences perform a sparse-
gather operation within SM as shown in Figure 9. Current
CPUs provide SIMD support, however the performance is not
as expected. An alternative approach is to emulate the sparse-
gather using a bunch of SIMD instructions as shown in the
bottom part in Figure 9. The values from the sub-sequence R
are used to index into the rows of SM . The entire rows are

172

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on November 07,2023 at 11:33:58 UTC from IEEE Xplore. Restrictions apply.

Sino-German Workshop on Multi-Physics Device Simulation and Hardware-Aware Computing
Oct 10-15, Xi’an, China

Machine Learning Accelerators in Bioinformatics
Summary and Future Path

34

image was generated by ChatGPT image generator (DALL·E)

