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In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by

the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning
algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet
unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are

very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the
foundational ideas of ML to this community such that readers obtain the essential tools they need to understand
publications on the topic. Although we will not go into the very details and theoretical background, we aim to point
readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics

and clinical pharmacology into perspective.

The advent of data availability and growth of computational
power, combined with the arrival of novel learning methods, has
led to a number of breakthroughs in many scientific areas. This
includes biological and clinical research, where applications
range from molecular biology1 to image data analysis2 and clini-
cal practice.” However, the idea of a computer learning some ab-
stract concepts—like humans do constantly—has been around
at least since the 1950s when the first neural networks” were de-
veloped. Even before that, other methods like Bayesian statistics
and Markov chains were used with a similar idea in mind. Many
of these methods are known to the pharmacometrics and clini-
cal pharmacology community by different naming conventions.
On the left, we indicate the machine learning terminology and,
on the right, the usual statistics naming (based on Tibshirani
heeps://statweb.stanford.edu/~tibs/stat315a/glossary.pdf):

e network, graphs < model

e weights < parameters

e learning < fitting

. gcneralization < test set performance

e supervised learning < regression or classification

e unsupervised learning < density estimation, clustering
o features < covariates or explanatory variables

The main difference to more traditional approaches lies very
much in the two distinct cultures of statistical modeling. This has
been eluded to nearly 2 decades ago by Breiman.’ Here, we extend
his definition by incorporating physiological models in one of the
cultures. In particular, culture 1 involves specifying a model to de-
scribe the observed data, and culture 2 aims to solve the problem by
taking an algorithmic modeling approach, thus inherently leading
to models with a higher number of free parameters and complex

interactions. This complexity can pose challenges to the interpreta-
tion of the model (so called “black box” problem). The approaches
typically used in pharmacometric applications fall into culture I,
where an underlying model is assumed based on pharmacological
principles and understanding of drug properties. Such models are
usually physiologically interpretable. Most machine learning (ML)
approaches fall into culture 2, where no explicit model is specified,
and a computer is responsible for identifying associations in the
observed data. These models tend to be difficult to interpret physi-
ologically, however, significant progress was made over the years in
the interpretability of ML models.®” Today, many aspects of a black
box model can be interpreted using proper tools.®

In this paper, we aim to support readers to develop the intuition
needed to understand how computers can learn or help humans to
identify patterns in data. The foundational ideas of ML are high-
lighted, but we do not describe the details and theoretical back-
ground of available ML methods. We point the interested readers
to other articles or books, such as “The Elements of Statistical
Learning™ (referred as ESL), and we refer to examples of their ap-
plication in molecular biology, drug discovery, drug development,
and clinical pharmacology.

We first introduce the concepts of data points, features, feature
spaces, and similarity measures and then dive deeper into the two
main domains of machine learning, namely unsupervised and su-
pervised learning, touching key aspects and examples. In the case
of unsupervised learning, computers are tasked to identify yet un-
known patterns in data without pre-existing knowledge like groups
or classes, whereas in the case of supervised learning, computers are
tasked to learn how to predict the class or the value of yet unob-
served data points based on a concept (often also called a “model”)
that has been derived from a training dataset. Figure 1 shows a tax-
onomy of the different methods described in this paper and can be
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Figure 1 Taxonomy and overview of main machine learning (ML) algorithms. (a) Taxonomy of the different methods presented. (b) Overview of
ML methods. The spectrum of available methods ranges from simpler and more interpretable to more advanced algorithms with potentially
higher performance at the expense of less interpretability. Position of methods on the figure is qualitative and in practice depends on the
number of free parameters, model complexity, data type, and the exact definition of interpretability used.8PCA, principal component analysis;
SVM, support vector machine; tSNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection.

used as a reference, albeit nonexhaustive, on what scenario is suit-
able to apply which ML tool. Please note that all the unsupervised
methods are also applicable in the case when labels are available.

DATA AND FEATURES
In ML, we deal with data and datasets. A dataset is composed of
multiple data points (sometimes also called samples), where each
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data point represents an entity we want to analyze. Therefore, a
data point can represent anything like a patient or a sample taken
from a cancer tissue. Many of the issues related to data are univer-
sal and affect not only ML approaches but any quantitative disci-
pline, including pharmacometrics.

To compile the dataset, one has measured and collected a
number of features (i.c., data that describe properties of the data
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points). Those features can be categorical (predefined values of
no particular order like male and female), ordinal (predefined
values that have an intrinsic order to them like a disease stagc),
or numerical (e.g., real values). For a patient in a clinical setting,
these could be (combinations of) the patient’s demographics,
disease history, results of blood tests, or more complex and high
dimensional measures, like gene expression profiles in a particu-
lar tissue or all single nucleotide polymorphisms that represent
the patient’s unique genome.

Each feature represents one dimension of the feature space and
the concrete value of a feature for a particular data point places
the point in a defined place in this dimension of the space. Taken
together, all the values of all features of a data point is called a
feature vector. The more features we have collected for the data-
set, the higher the dimensionality of the resulting feature vector
and the feature space. Obviously, as the dimensionality increases,
visualization of all dimensions of the feature space becomes in-
tractable and we have to rely on the computer to identify the
relevant patterns or have to apply dimensionality reduction
methods, as explained later in the section “Dimensionality
Reduction.”

Clinical pharmacologists are usually familiar with longitudinal
data, such as pharmacokinetic (PK) and pharmacodynamic (PD)
profiles, where the time-dependency plays a central role. In fact,
models used in pharmacometrics are based on equations that can
be justified based on physiology and pharmacology, which yield
insights into the time-evolution of the system. This is similar to,
for example, physical problems, such as weather forecasts, where
air flow and temperature lead to a certain temporal behavior of
the system. In ML, including time as a distinguished continuous
variable into respective algorithms, remains challenging and is
an area of active research. As of now, several options exist to in-
clude time-dependent data in ML datasets: Either directly where
cach time point represents a feature, or via transformations, such
as Fourier transform or B-splines, resulting in coefficients of
basic functions that can be considered as features. Alternatively,
Recurrent Neural Networks (RNNs) can be used to handle
longitudinal data, as outlined in the section “Recurrent Neural
Network.” However, all these approaches have the limitation
of—directly or indirectly—discretizing the time-dimension.

Most ML algorithms are designed to handle high-dimensional
datasets. Hence, derived features from the existing data are often
included, such as log-transformed data, products, and ratios of fea-
tures, or more advanced combinations. Such data transformation is
an important preprocessing step that can have a profound effect on
the model performance. Therefore, it is always a good idea to use
available domain knowledge and expertise to come up with relevant
features, a process sometimes referred to as feature engineering.

Data quality plays a crucial role in ML. Carefully chosen ML
methods and visual inspection defend against extreme values or
outliers. Missing data, however, can be challenging. Not all the
methods support data missingness, and again data transformation
could be required as a preprocessing step in such cases. There are
various ways to impute missing data, the performance of which
depends on the dataset and the method used.’® The most triv-
ial approach to the imputation is to replace a missing value with
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the feature mean across all the samples where it is defined. This,
however, sometimes can cause overfitting11 (also see the section
“Performance Measures and the Issue of Overfitting”).

It is also essential to scrutinize any bias in the data (e.g., selec-
tion bias). Preferably, samples for the ML should be an unbiased
random subset of the population. In practice, this is rarely the
case, and there are some biases in the data. These biases can af-
fect the ability of the model to generalize beyond the training
dataset (and even the test dataset if both share a similar bias).
An example of such a generalization problem is a model that
is supposed to learn how to distinguish a wolf from a husky by
animal characteristics, but eventually turns out to simply iden-
tify patches of snow on the photograph.6 There are various
approaches to mitigate bias (e.g., one could down-weight or
completely exclude biased samples or features).'” In particu-
lar, propensity scores are useful when estimating the effect of a
therapeutic intervention." Inspection of the feature importance
provides valuable information about the magnitude and the ef-
fect of the bias,é’7 which is recommend to be used for checking
the trustworthiness of ML models.

Many clinical classification datasets are unbalanced, meaning that
one or more classes are underrepresented. This could pose difficulties
for many ML algorithms, including artificial neural networks and
gradient boosting methods. One way to mitigate this problem is un-
dersampling/oversampling the majority/minority class, respectively,
or tweaking the misclassification cost in the objective function.

Finally, for many applications, it is important to define a simi-
larity or distance measure between two data points in the feature
space. The simplest distance measure would be the Euclidean
distance:

between the numerical feature vectors of two data points A4 and
B, for features i=1 ... 7, but depending on the type of data we are
dealing with there can be many other and sometimes much more
complex distance or similarity measures, such as cosine similarity'’
or similarity scores of two biological sequences.®

Main takeaways

e Transforming input data and feature engineering may improve
the model.

o Missing data requires imputation.

o Biases in the data should be scrutinized.

o Unbalanced datasets require amendment of the model.

¢ Meaningful measures of similarity between the samples should

be defined.

UNSUPERVISED LEARNING

In exploratory data analysis, we often do not know the true
“labels,” or we might want to examine the naturally emerging
patterns in the data. For this purpose, we can use unsupervised
learning methods, like clustering, frequent pattern detection,
and dimensionality reduction. Here, we will focus particularly
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on clustering and dimensionality reduction as they have many
applications in molecular biology and clinical practice.

Clustering

The goal of applying clustering methods is to identify relevant sub-
groups in a given dataset without having a predefined hypothesis
on the properties subgroups might have. For example, in a cohort
of patients with a particular disease, we might want to identify
subtypes that represent distinct biological mechanisms driving
the disease based on molecular measures taken."”

A cluster is a subset of the data which are “similar” to each other,
whereas points belonging to different clusters are more “different.”
There are multiple approaches to clustering that use different un-
derlying algorithms to group data points by their “similarity” All of
them have advantages and disadvantages and needed to be selected
carefully depending on the application and properties of the data.

One simple approach to clustering is #-means clustering.18 Here,
the number of clusters to be identified is predefined by a user-se-
lected parameter k. Each cluster is represented by a cluster center,
which is an artificial data point that represents the mean (or me-
dian) value of all points assigned to this cluster. In the beginning, £
cluster centers, known as “seeds,” are randomly placed in the feature
space. The algorithm then iterates through two steps. In step one
(“assignment”), data points are assigned to the cluster represented
by the closest center. In step two (“center shift”), the position of
cach cluster center is updated based on the composition of the clus-
ters after step one. After a number of iterations, this will usually
converge to a local optimum where cluster assignments do not or
only marginally change. The result of such a process is visualized in
Figure 2b. Although the procedure is intuitive, its major drawback
is that usually the clustering is strongly influenced by the value of £,
and more often than not the true number of clusters in the data is
unknown 4 priori. Because there is rarely a clear cut right or wrong
answer in clustering, further cluster investigation is required to

(a) (b)

S

o

e

L

NG
LI
N

)
2
)
<
=

fang
fang
lans
fang
fang
fang
fang
fans
fang
fang

identify meaningful clusters, which can be challenging particularly
in the light of a high-dimensional feature space.

Another group of methods for clustering is density-based cluster-
ing.19 In density-based methods, a cluster represents a part of the fea-
ture space where data points are dense. Data points belonging to the
regions of the feature space with low density are considered to be noise.
One of the well-known density-based clustering algorithms is Density-
Based Spatial Clustering of Applications with Noise.” Density-based
clustering does not require a predefined value setting the number of
clusters and provides a reproducible result. Further, it is able to also
identify complex cluster shapes, like the one shown in Figure 2c.

In hierarchical clustering analysis, the goal is to build a hierarchy
of clusters (ESL, chapter 14).9 One simple approach to hierarchical
clustering is neighbor joining. First, all pairwise distances between
all data points in the dataset are computed. Later, in every step of
an iterative process, the two data points with smallest distance are
grouped together. This results in a tree-like cluster structure, as dis-
played in Figure 2a on the left side and top of the heatmap where
the branch lengths of the tree represent the distances of samples. To
arrive at a discrete set of clusters like with £-means a distance thresh-
old has to be chosen at which the tree is cut horizontally. Again,
there is no optimal way of selecting such a threshold and many
reasonable solutions may exist. Hierarchical clustering can be used
alone, or used in combinations with heatmaps (e.g., Figure 2a) to
visualize selected or all features, for instance, gene expression data.

Dimensionality reduction

The number of features and, therefore, the dimensionality of the
feature space can be very high with tens of thousands of measures
per sample. Not only does this make data visualization challenging
butalso the analysisis challenging, In particular, analysis of high-di-
mensional datasets can be associated with a phenomenon known
as the “curse of dimensionality,”21 which refers to data sparsity
and counterintuitive geometrical properties in high-dimensional
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Figure 2 Overview of the results of different clustering approaches. (a) Shows the results of a two-dimensional hierarchical clustering. The two
dendrograms visualize the similarity across samples and also across the markers measured. Such visualization is frequently used in biology
for gene expression or other -omics technology readouts. (b) Shows the outcome of a classical clustering using k-means with a selected value
of k = 2. Resulting clusters are usually convex and every point is assigned to one cluster, namely the one which is represented by the closest
center point (marked by X). (¢) Shows the result of a density-based clustering. Please note that the approach can identify nonconvex cluster

forms, such as the orange cluster.
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spaces. The “curse of dimensionality” poses challenges on most
data analysis approaches, including but not limited to ML.

To mitigate such problems dimensionality reduction methods
might be applied. Dimensionality reduction can aid data visualization
by transforming each high-dimensional data point into two or more di-
mensions while keeping the majority of the variability and relative dis-
tances. Furthermore, dropping uninformative features could improve
the model performance and convergence time. Although some of
these methods, like principal component analysis, have even been de-
veloped long before the term ML has been coined,? others, like t-Dis-
tributed Stochastic Neighbor Embedding23 or Uniform Manifold
Approximation and Projection,24 were developed recently and address
complex challenges arising in data analysis. There is also a powerful
neural network-based dimensionality reduction approach called au-
toencoder. For details on how to apply dimensionality reduction in

biomedical data, we would like to refer the reader to a recent review.>>

Examples of unsupervised ML applications
Clustering is widely used when analyzing high-dimensional
data, such as transcriptomic, metabolomic, and proteomic ex-
periments. Typically, hierarchical clustering would be used to
identify main factors affecting the readouts as well as for identifi-
cation of modules with high degree of coregulation. In single-cell
sequencing, nonhierarchical clustering is used to understand
which cell types are present in the sample. Clustering is also used
to identify relationships among patients, tissues, diseases, or even
disease symptoms.%_29 Drug compounds themselves may also be
clustered based on gene expression, sensitivity, and target protein
properties30_32 with the goal of guiding drug discovery.
Dimensionality reduction is routinely used in transcriptomic
and other -omics experiments, usually to identify outliers and po-
tential batch effects. In single-cell sequencing, Uniform Manifold
Approximation and Projection or t-Distributed Stochastic
Neighbor Embedding are used both for data visualization and for
subsequent clustering.24 Dimensionality reduction is also used to
visualize the high-dimensional chemical space33 or as a prepro-
cessing step to improve performance of an ML model >

Main takeaways

e Clustering can be used to understand structure in data by
grouping similar observations together.

e k-means clustering is a simple yet powerful tool, however, the
number of clusters must be specified in advance.

e Density-based methods do not require a prespecified number of
clusters and allows identification of complex patterns in the data.

e Hierarchical clustering provides an overview of the relationship
on multiple levels.

¢ Dimensionality reduction is used not only for data visualization
but also to drop uninformative features.

SUPERVISED LEARNING

In a supervised learning problem, the computer is fed training
data with observations and the corresponding known output val-
ues. The goal is to learn general rules (also often called a “model”)
that map inputs to outputs, so that it will be possible to predict the
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output for new unseen data, where we have observed input values
but not their associated output.

There are two main categories of supervised learning: (i) classi-
fication where the output values are categorical, and (ii) regression
where the output values are numeric.

In subsequent sections, the context of model fitting in supervised
learning and the common issue of overfitting are introduced. Then,
we explain how the performance is evaluated for classification and
regression tools (ie., how to assess the quality of mapping from in-
puts to outputs by the algorithm). This aspect is essential, as the
merit of adopting ML methods often centers around the prospect of
obtaining higher performance with the trade-off of interpretability.
Understanding the different performance metrics enables better eval-
uation of the merits of a proposed model, as opposed to an assumption
that an ML solution could always outperform a traditional approach.

We then dive into some of the existing classification and regres-
sion methods, starting off at the shallow end, where interpretation
of the models is still straightforward, and progressing toward more
ML-centric approaches where performance triumphs, often at the
expense of interpretability. Figure 1 summarizes the available spec-
trum of methods with respect to performance and interpretability.
This section concludes with a nonexhaustive review of the applica-
tions of supervised learning methods in biology and, particularly,
clinical pharmacology.

Performance measures and the issue of overfitting

The goal of a learning algorithm is to learn a concept or function
(= amodel) that describes the observed training data and is able to
generalize on new independent data by avoiding both underfitting
and overfitting.

The performance of a model is evaluated by methods that allow
model assessment (i.e., estimating how well a given model performs
in general and model selection; and the estimation of the perfor-
mance of different models to choose the most adequate model).
Some of these methods are highlighted in the next sections.

Model fitting. The model parameters are estimated based
on observed data in the training set. To derive the optimal
parameter values (e.g., for coefficients and weights), a distance
measure between model and data is defined and minimized
numerically. Independently of the metric chosen, the goal of
model fitting is always to estimate the parameters by minimizing
the distance, also called loss function or cost function, with two
requirements:

e The model should provide predicted values that are close to ob-
served ones on the training set, otherwise we say that it under-

fits and has a high bias.

o The model should generalize beyond the training set. A model
that overfizs predicts well on the training set but poorly on an
independent test set, often because it is too complex for the
data. In this case, we also talk about high variance.

In the following, we will call objective function any function that
is optimized to estimate the model parameters.
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Figure 3 lllustration of the underfitting/overfitting issue on a simple regression case. Data points are shown as blue dots and model fits
as red lines. Underfitting occurs with a linear model (left panel), a good fit with a polynomial of degree 4 (center panel), and overfitting with
polynomial of degree 20 (right panel). Root mean squared error is chosen as objective function for evaluating the training error and the

generalization error, assessed by using 10-fold cross-validation.

In the regression case, Figure 3 illustrates the issue of underfitting
and overfitting in the context of regression. Underfitting can occur
when the model is too simple or when the features extracted from the
data are not informative enough (Figure 3, left panel). Overfitting
often occurs when the model is too complex or there are too many
features over a small set of training examples (Figure 3, right panel).

This underfitting/overfitting issue is also often referred to as the
bias/variance trade-off, which comes from the expression of the ex-
pected prediction error, including both bias and variance terms. The
bias is an indication of the average error of the model for different
training sets: It is the discrepancy between average of predicted val-
ues and the true mean we are trying to predict. The variance reflects
the sensitivity of the model to the training set: For a given point, it
corresponds to the spread of predicted values around their mean.

To minimize the predicted error, there is a trade-off between
minimizing bias and variance: Increasing model complexity de-
creases bias but increases variance. To build less complex models,
different techniques exist summarized under the term regulariza-
tion. The principle consists in modifying the objective function by
adding penalization terms that will influence parameter estimation.
L1 and L2 regularization are the most common ones (ESL, sections

34.1and 3.4.2).]

Different categories of loss functions. Different objective
functions can be chosen to measure the distance between
observed data and values predicted by the model. Some of the
distance metrics used in practice can be associated to a likelibood.
The likelihood indicates how probable it is to observe our data
according to the selected model. The most common use of a
likelihood is to find the parameters that make the model fit
optimally to the data (i.e., the maximum likelihood parameter
estimates). Usually, the negative logarithm of the likelihood is
minimized and considered as objective function because it has
favorable numerical properties. Similarly, in ML metrics, such as
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mean squared error, logistic objective, or cross-entropy, are used
to find optimal parameters or assess the fitness of the model.

In practice, analytical calculation of maximum likelihood or
minimal loss may not be feasible, and it is often necessary to use a
numerical optimization algorithm to solve for the best parameter
values. Gradient descent is such an algorithm, where we first define
an objective function for which we want to minimize and then
iteratively update the values of the parameters in the direction with
the steepest decrease (first-order derivative) of the objective func-
tion until a convergence to a minimum distance is deemed reached.
In the scenario of a nonconvex objective function, the success of
finding a global minimum, as opposed to landing in some local
minima, will depend on the choice of the initial set of parameter
values, the learning rate (i.c., step size of cach iteration) and the cri-
terion for convergence. The reader can refer to ref. % for details on
convex and nonconvex optimization processes. Stochastic gradient
descent is an additional trick that can further speed up the optimi-
zation by randomly sampling a training dataset and summing the
distances across this subset of training data points for approximat-
ing the objective function.

General principle of model selection and assessment. The problem
of overfitting shows that the model performance on the training
set is not a good indicator of its performance on a new dataset. We
will detail below the principles of model performance evaluation
in a supervised learning setting.

The general principle of model selection is as follows: When there
are enough data, we separate them into three subsets—training,
validation, and test sets. The training set is used to build different
models, whereas the validation set is subsequently used to choose
the algorithm and select the hyperparameters, if needed. Then, the
model with the best performance on the validation set is selected.
Finally, the test set enables to assess the generalization error, also
called zest error, which is the prediction error over a test dataset
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that was not used during the training.9 It is important to note here
that the generalization error could be higher than expected when
the original dataset is biased (sce the section “Data and features”).
Validating the model against a fully independent test dataset is
the gold-standard method of assessing the generalizability of the
model.

When the dataset is too small to extract a decent validation
set, it is, for example, possible to use cross-validation techniques
to select model hyperparameters. After putting aside a subset of
the data for testing, £-fold validation consists of dividing the
training set into & subsets, £—1 subsets being used for train-
ing and the last one to assess the performance. This process is
repeated 4 times, each 4 subset being used once for validation,
and the performance scores from each subset are then averaged
for each set of hyperparameters to test. The £-fold cross-valida-
tion procedure is summarized in Figure 4. To choose between
different learning algorithms36 nested cross-validation can be
used.

Indicators of model complexity vs. goodness of fit. In
pharmacometrics, model selection is usually based on quantitative
measures that summarize how well the model fits the data,
often with penalties for overfitting. The most commonly used
are the Akaike information criterion and Bayesian information
criterion. They penalize the number of model parameters and
reward goodness of fit, measured through likelihood. The Akaike

information criterion is formalized as:
AIC=2M-21In (L), )

with the number of parameters M and the maximum likelihood L.

In contrast, the Baycsian information criterion:
BIC=In (n)-M—2In (L), 3)

takes into account the number of data points 7.

These model selection approaches are rarely used in ML, partly
due to the complexity of datasets and the associated violation of
distributional assumptions. Instead, approaches like cross-valida-
tion are more commonly used (Clustering).

Performance measures for model assessment. For regression
models, we typically use the mean squared error, or other types
of average objective functions, to compare model performance
on training and test set. For two-class classification problems,
common performances measures are often derived from the
“confusion matrix” shown in Figure 5 and briefly described below.

o Precision, corresponding to the ratio of correctly predicted pos-
itive values to the total number of predicted positive values.

o Recall, also called true positive rate (TPR) corresponding to the
ratio of correctly predicted positive values to the total number
of positive values in the dataset.

e False Positive Rate (FPR), corresponds to the proportion of
negative values predicted incorrectly.

e Accuracy, corresponding to the number of correctly predicted
values divided by the total number of predicted values.

e Arca under the ROC curve (AUC): Receiver operating charac-
teristic (ROC ) curves show the TPR (recall) and FPR depen-
dence. In binary classification, each point on the ROC curve is
located by choosing different thresholds for classification of y;in
positive or negative class. The top left corner of an ROC curve

Limited dataset

Training subset

Test
subset

Training folds

For each model to test

1 subset k-1 subsets Score 1
run 1 51
Avera
Score 2 g€
run 2 s of scores
over the
k runs
Score k
run k Sk

For each run:
. model built on k-1 subsets

. performance measure computed on
test subset for model validation

" Final model

Select model with best metric

built on training

subset Evaluate model on test set (generalization error)

Figure 4 lllustration of the general principles of supervised learning in the case of a limited dataset. To assess the generalization ability of
a supervised learning algorithm, data are separated into a training subset used for building the model and a test subset used to assess he

generalization error.
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Predicted labels

1 0
Recall=TPR
1 True Positive (TP) False Negative (FN) (True POSiﬁVTiRate)
Actual labels | TPR = ovrm
(observations) | TN
- ) Specificity = TNIFP
0 False Positive (FP) True Negative (TN) False Positive Rate:
FP
A= FP+TN
Precision False Negative Rate Accuracy
TP FN TP +TN
TP + FP TN + FN TP +TN + FP + FN

Figure 5 Confusion matrix for two-class problems. The confusion matrix indicates how successful the algorithm was at predicting labels in
a binary classification problem where labels take values O (called “negative”) or 1 (called “positive”) by evaluating the predicted vs. the real
labels. Every data point in the test set belongs to one of the four categories and different measures can be derived from these numbers.

is the ideal case with 100% of positive values correctly classified
(TPR = 1) and 0% of positive values incorrectly predicted at 0
(FPR = 0). As it is ideal to maximize the TPR while minimizing
the FPR, a larger area under the ROC curve (AUC) is better.

Some of these metrics could be generalized for multiclass
problems, where there are more than two different labels in the
dataset. However, the metrics mentioned above are noncon-
tinuous with respect to model parameters, hence, parameter
optimization may be challenging when they are used as objec-
tive function. A continuous alternative and widely used metric
previously mentioned in the section “Model fitting” is cross-en-
tropy (ESL, chapter 9),9 which not only accounts for the most
likely prediction but also for the prediction score (prediction
confidence).

k-Nearest neighbors

We start our overview on existing learning methods with a method
that skips the learning step completely and, therefore, does not lead to
an explicit model that is being learned from the training data. As we
will discuss later, this is also one of its biggest shortcomings. This type
of learning is also often referred to as “instance-based learning” and,
in our particular example, “4-nearest neighbor learning” (kNN).*

In these approaches, learning simply consists of storing all the
existing, labeled data points (i.c., the training data) in a database.
When a new, yet unclassified example is observed, the algorithm will
place it in the z-dimensional feature space based on its feature values.
For cach data point in the database, we now compute the distance
(e.g.» a Euclidean distance or other, more complex ones) to this new
data point in order to identify its £ closest neighbors. In a second
step, we examine the known labels of these £NNG in our database.
Say we have chosen £ to be nine and we observe seven of the nearest
neighbors to be labeled as class X whereas two of them are labeled
as class Y. In this case, we would assign our new data point to the
class X as the majority of its neighbors are of this class. An exten-
sion of this simple approach would be to weight the importance of
the neighbors to the classification by their distance to the new data
point. Despite being very straightforward and simple, it proves to be
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a very effective classification method in practice. It is very efficient
when it comes to training (i.c., storing the data in the database) and
efficient implementations for computing the #NNG exist.

So, what are the challenges to this approach? The most obvious
one is that because there is no “learning step,” the #NNs approach
does not identify the features that are really relevant to predict the
class of a new case. Therefore, even though in a 20-dimensional fea-
ture space, where only 2 might be really relevant for the classification,
the distance will be computed taking all 20 dimensions into account.
Thus, the £ nearest data points returned by the query will be highly
influenced by irrelevant features or noise (see also “Dimensionality
reduction” on how to remove some of those features). As a conse-
quence, the resulting classification will be driven by noise rather than
the real underlying pattern in the data. In this aspect, the approach
suffers from the same challenge that also clustering approaches (see
the section “Clustering”) are facing, which are often summarized as

. RSS!
the “curse of dimensionality.”

Naive Bayes
The second and very intuitive learning approach we would like
to introduce is naive Bayes. It is based on computing simple sta-
tistics from a given training dataset as the learning step following
astraightforward (but naive) application of the Bayesian formula
for conditional probability in order to obtain a classification.
Due to its simplicity it is also often used to obtain a baseline clas-
sification performance that other, more involved methods have
to improve upon. It can best be explained by a simple example.
Let us assume we have training dataset with patients suffering either
from a harmless cold or an influenza (flu) infection. We have measured
two features for each patient, namely fever (high, low, or no) and pain
(strong, low, or no). For each patient, we know through a laboratory
test if the patient had an influenza infection or not. We now want to
learn from these data and apply it to diagnose a new patient (where
we have no laboratory test available) using the naive Bayes approach.
As alearning step, we count for each feature value how often it oc-
curs in the influenza and in the cold patient group (e.g., to obtain the
probability for high fever under the condition of the patient having a
fluand so on). The result of this learning step might be seen in Table 1.
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Table 1 lllustration of naive Bayes: Example of learning step results on flu dataset, showing the probabilities of features

values given the patient category

Features Fever

Pain

Classes High Low No

Strong Low No

Influenza (Flu)

P (Flu)=0.1 P(Fever = High|Flu)

=0.95

P(Fever = Low|Flu)
=0.05 =0

P(Fever = No|Flu)

P(Pain = Strong|Flu)
=0.75

P(Pain = Low|Flu)
=0.20

P(Pain = No|Flu)
=0.05

Cold

P(Cold) = 0.9  P(Fever = High|Cold) P(Fever = Low|Cold) P(Fever = No|Cold) P(Pain = Strong|Cold) P(Pain = Low|Cold)
=0.5

=0.1 =0.4

P(Pain = No|Cold)

=0.3 =0.3 =04

Table 1 summarizes probability of each feature given the cat-
egory of patient and shows that in the whole patient population
the probability for a patient having an influenza infection is 0.1,
whereas the probability for a normal cold is 0.9.

Once we have generated these values and, therefore, completed
the “learning step” by analyzing our dataset, naive Bayes makes a now
naive assumption, which is that all these features are conditionally
independent of one another. In reality, this is rarely true and there
are more advanced Bayesian learning methods that do not make this
assumption. However, the assumption allows for a straightforward
application of the Bayesian theorem. For details (i.c., formulas) on
how to derive this classifier, we would like to refer the reader to fur-
ther reading material (ESL, chapter 6).9 In brief, the probability of
a certain label (flu or cold) for a new test item can be computed as
the product of the single conditional feature probabilities (fever and
pain) that are observed for the data point times the probability for
the class (flu or cold). The class with the maximal posterior likeli-
hood is selected as the predicted class for the test item. Assuming we
have a test person with an unknown diagnosis for influenza or cold,
and we know that this person shows up with high fever and a high

level of pain, we would compute the likelihood for influenza as:

P(Fever = High|Flu) - P(Pain = Strong|Flu)-
P(Flu)=0.95-0.75-0.1=0.07125. (4)

In the same way we would compute the likelihood for a cold as:

P(Fever = High|Cold) - P(Pain = Strong|Cold)-
P(Cold)=0.1-0.3-0.9=0.027. )

For a patient that presents to the doctor with high fever and
strong muscular pain or headache, this results in a (nonnormal-
ized) posterior probability for an influenza infection of 7.125%
and in a probability of 2.7% for a normal cold. Therefore, the pa-
tient suffers more likely from a flu than from a cold.

In many aspects, naive Bayes, therefore, formalizes how humans
might learn from experience.

Decision trees, random forests, and gradient boosting

Decision trees are an essential building block for many ML al-
gorithms. They have been used for at least 50 years.”®*” The
idea behind decision trees is very intuitive and best represented
in a visual form (e.g., Figure 1). Depending on the problem, de-
cision tree leaf nodes have classes, probabilities, or continuous
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values in case of regression. In the early days of ML, decision
trees have been used to solve pharmacological problems, such
as dosing, toxicology, and <iiagnostics.40_42 Although usage of
decision trees is intuitive, the question is how to construct such
trees from the available data. A few famous approaches worth
mentioning are CART* and ID3.#4

Currently, decision trees are almost never used in ML in their
original form. One of the reasons being is the fact that decision
trees are prone to overfitting. Nevertheless, decision trees became
the building block for two widely used approaches: Random deci-
sion forests and gradient boosting frameworks.

Both random decision forests and tree-based gradient boosting
use a set (ensemble) of trained decision trees to predict the out-
come variable. The crucial difference between tree-based gradient
boosting and random decision forests is on how trees are created.

In case of random forests, the algorithm constructs hundreds
or thousands of deep decision trees (“strong predictors”). Each of
those trees is likely overfitted, however, by combining the outputs
of multiple trees we can solve the overtraining problem. On the
contrary, in a gradient boosting algorithm, such as XGBoost or
CatBoost, each of the trees is a shallow decision tree (“weak predic-
tor”), and the algorithm iteratively decreases the classification error
over time by adding more and more trees.

Today, gradient boosting methods show a great performance
both in publications and ML competitions. Even without hyper-
parameter tuning, they usually provide excellent performance
with a relatively low computational cost.!! On the other hand,
random forests are usually less prone to overfitting45 and re-
quire less parameter tuning.46 This makes random decision for-
ests attractive for smaller datasets or as a baseline method for
benchmarking.

Tree ensemble methods can be used for classification tasks, as
well as for regression. In both cases, tree outputs are averaged,
which can create a smooth output function.

Kernel methods: Support vector machines and regression

Kernel methods and, more specifically, support vector machine
(SVM) for classification and support vector regression (SVR) for
continuous output have found applications in computational biol-
ogy for their ability to be robust against noise and to work with
high-dimensional datasets found in genetics, transcriptomics, and
proteomics.”” Concretely in a more recent example, SVR was used
for delineating cell compositions from bulk transcriptomics data.®®
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This section first offers a brief overview of the key concepts
highlighting the notions of kernel transformations, an objective
function with a lossless region, and a regularization term.**>° The
emphasis will be placed on providing the reasoning behind why
this is a more versatile method in dealing with multiple inputs
where their effects on the output are unknown and can be postu-
lated to span into nonlinear functions.

Background. Similar to all regression methods, the objective
of SVR is to postulate a function on the input(s) that can help
estimate for the observed output. Likewise, for SVM, the goal is
to find the optimal decision boundary that separates the classes.
As the name suggests, the core concept behind SVM/regression
is the ability to objectively choose a subset of training data called
support vectors. These support vectors define the model, which is
usually a hyperplane in some feature space. To achieve this, several
notions need to be introduced.

o An e-insensitive loss function allows for residual less than €, to
be considered lossless and, thus, not part of the support vectors
factored in to estimate the output-input function.

o A regularization term is added to the objective function with
the aim of searching for a model to describe the relationship be-
tween the input and output variables such that the hyperplane
is kept as flat as possible.

o Slack variables can be introduced to allow for training errors,
termed soft margin, when the output is found outside the e-in-
sensitive region. By introducing slack variables, tolerance for the
residual term to be greater than € is made.

o A kernel function allows us to work in a higher dimension space,

support
vectors

feature space. A kernel function applied in the input space cor-
responds to a dot product in the feature space where similarity
measures are computed. This is achieved without having to ex-
plicitly map the input data from the input space to some feature
space by some mapping function ¢.

With all these concepts at hand, we are now capable of fitting a
model with some thickness, known as a tube introduced by the &-in-
sensitive loss function, whereas the regularization term controls for
the flatness of this hyperplane in some feature space defined by the
kernel function. Figure 6 illustrates these basic concepts of SVM.

Kernel trick and choice. SVR can capture nonlinear target
functions, which map the multivariate inputs to the output. More
precisely, the kernel trick means that a kernel:

k(x;x;): = (@(x,).D(x;)) (©)

applied to a set of inputs in the input space is equivalent to comput-
ing the dot product as a similarity measure in some feature space.
This is achieved without having to explicitly perform a pre-map-
ping of the inputs, x;, with a mapping function ®@. A kernel func-
tion calculated in the input space corresponds to a dot product in
some feature space if and only if it is a symmetric positive definite
function.”">

The choice of the radial basis function kernel,

(CD(XZ),CD(XJ)) = k(xi’xj)RBF = CXP_Y(“X"_XJ”)Z (7)

is often made as it can be expanded to a feature space of infinite
dimensions. Although radial basis function covers a wide range

~. margin

(a)
optimal
hyperplane
/|
Construction of hyperplane //
-/
implicit mapping
/ by kernel trick

(b) "

e
/
Input space //
e

Feature space

Figure 6 lllustration of support vector machine (SVM) principles. (a) lllustration of a simple case where hyperplane separate two groups
directly in inputs space. (b) Illustration of performing nonlinear classification by implicitly mapping inputs into high-dimensional feature spaces

where data points can be separated by a hyperplane.
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of possible effects, it leads to harder interpretation of the eventual
model. In practice, the selection of the kernel function is based on
computational efficiency. Other popular kernels include linear and
polynomial kernels.””

Neural networks

Background. Neural networks constitute a collection of neurons and
edges, drawingits origins from circuit analysis. Different weights can
be applied to each edge connecting the neurons. At each neuron, an
activation function is applied to a weighed input signal to generate
an output signal. A sigmoidal function is often used, consisting of
a first order lowpass filter of a unit step function. Such sigmoidal
function has the advantages of yielding bounded output and of
being continuously differentiable, which is needed in the backward
propagation step to tune the weights (parameters of the model), see
steps defined in the section “Recurrent Neural Network.”

Neurons are further subdivided into an input layer, hidden lay-
er(s), and output layer, as shown in Figure 7a. The hidden layers
perform the layer of abstraction needed to go from the input layer
to the output layer. The number of hidden layers define whether
the system is a shallow learning system (with one or a few hidden
layer) or deep learning (with many hidden layers). There is an in-
herent trade-off between the number of hidden layers and time
required to train the model. For this reason, although the core
concept embedded in the neural network is not a novel one, it has
found a resurgence of applications due to recent advances in com-
putational power.

The most basic type is known as feedforward neural network, as
information is just propagated from the input layer to the hidden
layer(s) and finally to the output layer. The current state of the sys-
tem is not defined by any past state; hence, it represents a memo-
ryless system.

In the following, illustrative examples of neural networks are
described: recurrent neural networks, long short-term memory
networks, and gated recurrent networks. Further notable neural
networks that are out of scope for this article but we recommend

further reading on are convolutional neural networks, encod-

54,55

er-decoder networks, and generative models.>®

Recurrent neural network. Recurrent neural networks are a class
of neural networks dedicated to time series datasets as they factor
in the inherent sequential relationship observed in the data of
one time point to another. It has found success in what is known
in the field as sequential data, where the order or time sequence
of the signal plays a role, namely in natural language processing
and time series forecasting. More closely related to our field of
research, it has found application in predicting outcomes from
electronic health records, where the richness comes inherently
from the sequence correlation structure of the data to recommend
swift and even anticipatory actions to be taken by the medical
staff.>’ Rephrasing the question to solve a modeling conundrum
in the pharmacometrics field is only starting to emerge at the time
when this paper was drafted. Tang ez al. present one of the rare
attempts on how to use ML (here: RNNs) to characterize the PK
of remifentanil and compared the results to the pharmacometrics
gold-standard method NONMEM.>® Although nonstandard PK
models were used for the comparison and the generalizability of the
results can be challenged, Tang ez a/. make a valuable contribution
in exemplifying where RN N could be used in pharmacometrics.

The basic form of an RNN is shown in Figure 7b, where each
current state (at time #) is defined by a combination of the previous
state of the system and the current input, which is similar to the
concept of classical dynamic systems. The weights for each edge
can be determined as to how far back to look into, similar to a time
constant. Contrary to feedforward neural network, an identical
weight is shared across in the individual neuron unit block across
all the earlier discrete time steps.

At the core of the RNN, it consists of an input sequence defined
by x(#), an output sequence as defined by o(#), a hidden or system
state sequence as defined by 4(z), as well as a chained submodules
of repeated units.

The steps needed to train an RNN model are as follows:

1. Define a network architecture and initialize the model with
random weights and biases.

2. Perform a forward propagation to compute the estimated
output.

3. Calculate the error at the output layer.

O(t-2)] [O(t-l)] [ oft) ]

@ (b)
ST N\
[ output |
layer i [ o
hidden -
layers

unfold [
h h(t 2) }——E h(t 1) }—4[ h(t) ]—4

|

Output

» \

= m{

~_ -

L

N %

Figure 7 Neural networks. (a) Basics of feedforward neural networks. (b) Unfolding of recurrent neural networks. (¢) Extensions of recurrent
neural networks with gating units. Black square represents a delay of one discrete time step.
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4. Perform a backward propagation to update the weights using
an optimization approach.

5. Repeat steps 2—4 for the number of epochs (or iterations) until
the loss function value is deemed minimized.

Extensions from this Vanilla RNN were developed to address
the problems of unstable gradient problem (e.g., the vanishing
gradient problem and the more serious counterpart of instabil-
ity caused by an exploding gradient). These problems at their
core are due to multiplications (under the influence of numer-
ical errors) introduced in the backward propagation in relation
of the error estimates to the parameters along each layer of the
neural network. In other words, the vanishing gradient causes
information that needs to be captured from a time point further
away from the current time and, thus, renders the model weak
to capture valuable stored memory with longer time lag. In the
less common event that at least one partial derivative violates the
requirement for stability, translating to the state matrix of having
at least one eigenvalue > 1, this will lead to an exploding gradi-
ent problem, a known problem in traditional dynamic system
for discrete time. The remit used to address this fundamental
problem will be described more in two well-known extensions
of RNN (long short-term memory (LSTM) and gated recurrent
network (GRU)).

There has been many different variants and development in
RNN research, each novel method serves to address a different
problem ultimately leading to the development of more robust
models. For example, to circumvent the unstable gradient problem,
gradient clipping of forcing the gradient to a threshold has been
proposed in ref. 59’60, but by far the most widely accepted method
is the inclusion of gating units.

Long short-term memory and gated recurrent network. LSTM
is part of a larger family of gated RNNs that retain and forget
information with the introduction of gating units. More
specifically, three gating units can be included in the system,
as shown in Figure 7c. First, a direct copying or clearing of the
state altogether can be controlled by the forget gate. A similar
approach is also handled by the input gate to decide whether
to include the current input signal as part of the update of the
state. The amount of information to retain from the previous
state signal and from the perturbation input signal is learned
at each time step,61 The system needs to learn long-term
time dependencies by retaining information but it must also
occasionally learn to clear information from its current state.?
Consequently, solving the vanishing and exploding gradient
problems. Finally, an output gate can be introduced, although
less common, as a gating mechanism to decide which output
signal gets fed back to the system.

A simpler rendition and, thus, faster training implementation can
be found in GRU. GRUs address the same problem of unstable gra-
dients and represent a new addition to this family of RNN exten-
sions. The core difference between LSTM and GRU is that the latter
omits the output gate and uses simpler reset and update gates.63 In
theory, however, LSTM should perform better as it can up-weight
or down-weigh information from longer time-distance/lag.
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Examples of supervised ML applications in clinical
pharmacology

Models in clinical pharmacology have typically been established
by translating physiological and pharmacological principles to
systems of differential equations and using expectation-max-
imization algorithms to estimate the model parameters. This
mechanistically motivated approach has proven useful in many
applications and is a well-established component of drug develop-
ment programs. Potentially due to the success of these established
approaches, only few examples of applying ML methods to clin-
ical pharmacology problems exist up to now. Ryu ez 4/. trained a
deep neural network on a large curated database covering 192,284
drug-drug interactions in order to predict drug-drug and drug-
food interactions for prescriptions, dietary recommendations, and
new molecules.®* Combining datasets from multiple studies to
create large databases increases the potential to use ML to tackle
broad clinical pharmacology questions.

ML has also been used to bridge drug discovery and clinical
development. For example, Hammann ez a/. were able to predict
incidence of adverse events from a molecule’s chemical structure
using a decision tree method.®® Similarly, Lancaster and Sobie im-
plemented SVMs to predict risk of Torsades de Pointes from in
vitro data.®®

In the area of personalized safety, ML has been used by
Daunhawer ¢z al. to personalize safety in the context of hyper-
bilirubinemia in neonates.”” The authors used lasso and random
forests to make predictions from clinical datasets. Furthermore,
reinforcement learning was used by Gaweda ez al. to personalize
pharmacological anemia managemcnt.68 A similar approach was
used to develop a “closed loop” system for glucose control by com-
bining a mathematical model, a glucose sensor, and a reinforcement
learning model.*” Chavada e 4/. and Hennig ez al. investigated the
feasibility of Bayesian feedback for dose adjustment of antibiot-
ics.”””! The area of personalized healthcare could greatly benefit
from using ML models that recommend dose adjustments in real
time. In a recent study, an ML-type control algorithm was inte-
grated with existing structural PK/PD models that are familiar to
pharmacometricians and the resulting closcd—looép control system
was found to outperform a sensor-assisted pump.*’

Main takeaways

e Supervised learning methods infer models based on labeled out-
put-input pairs of the training dataset.

e Performance metrics are used to assess the classification and re-
gression models to avoid overfitting of the training dataset.

e Many supervised learning methods exist with different trade-
off between interpretability and performance.

e RNN is a special form of neural network that represents a dy-
namic system in discrete time.

o Examples of the applications of these supervised learning meth-
ods in computational biology and particularly clinical pharma-
cology are beginning to emerge.

DISCUSSION
In this tutorial, we have introduced some fundamental methods
of ML that are likely to be of interest to the clinical pharmacology
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and pharmacometrics community. Our brief introduction is sup-
plemented with a range of relevant references. We have provided
context by mentioning examples relevant to drug development.
We conclude by summarizing how the fields of ML and clinical
pharmacology are currently situated and by providing an outlook
on how we expect to see further integration of the fields in the fu-
ture. Advanced statistical methods are not new to pharmacome-
tricians; in fact, such methods have been used to describe PK and
PD phenomena for some time. For example, Bayesian methods are
a well-established component of pharmacometric approaches.72’73
It scems, therefore, likely that as statistical and ML approaches be-
come more established and more prominent in the pharmaceuti-
cal industry, pharmacometricians will be among those who take
advantage of these methods. Furthermore, new opportunities to
investigate other clinical questions, such as patient stratification
from high-dimensional baseline characteristics, may become pos-
sible in clinical pharmacology using ML approaches.

Several of the examples where ML approaches have been applied
to clinical pharmacology questions include the integration of “clas-
sical” modeling techniques, such as specifying a structural model
based on mechanistic understanding, and ML approztclles.69_71
Classical pharmacometric approaches are based on pharmacological
principles that reflect hypotheses generated from the understanding
of physiology and drug properties. It is unlikely that these models
will be completely replaced by ML approaches in the near future.
However, when the datasets and problems are more complex, many
unknown influences and relationships exist and the focus is on in-
terpolation and fast evaluation, pharmacometrics might benefit
from applying ML-type methods. Going forward, we expect that
fusing this understanding with ML models could lead to very effec-
tive models in the future. A recent perspective article provides more
detail on applications of ML in clinical pharmacology.74

In the age of big data, there are many new opportunities for ML
in clinical pharmacology. For example, data generated from wear-
able devices pose new challenges on how they can be linked to PK
data in the future. In addition, access to real-world data could pro-
vide strong evidence for covariates, supplement control datasets,
and bolster models that have been trained on small datasets.

In pharmacometric approaches, a predictive model is typically
established by integrating a structural model and relevant data.
The structural model substantially constrains the solution space
and, therefore, relatively little data are required to fit the model.
On the contrary, in neural networks, model structure is not pre-
specified and, thus, comparatively much more data are required
for building a predictive model. It is also important to note that
we are still very much at the infancy stage of understanding
at which point the merger of larger data with these novel ML
methods can be beneficial for performance as compared with
more traditional methods. The following challcnge75 on time se-
ries forecasting shows that combinations of classic statistical and
ML methods produce the most accurate forecasting and, thus,
suggest it as a way forward. One of the main drivers of success
of the pharmacometric approaches is that the models include a
thorough understanding of the processes of drugabsorption, dis-
tribution, metabolism, and elimination. The established models

are highly predictive and, thus, find wide use in supporting drug

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 107 NUMBER 4 | April 2020

development. Due to this success, despite the arrival of ML, clas-
sical pharmacometrics approaches are not expected to decrease
in importance and activity. In contrast, they can be enhanced
and improved by knowledge and insight distilled by ML meth-
ods and models.

An ongoing challenge for members of the clinical pharmacology
community who wish to use ML methods is the inherent preva-
lence of longitudinal data. So far, there are many ML methods that
rely on baseline features to make predictions, but relatively few ex-
amples where longitudinal data are used.

Opverall, we expect that there will never be a universal, one-size-
fits-all approach to which modelers from different fields converge.
We note that there are many areas of potential synergy where mod-
eling fields overlap in the remit of drug development. The clinical
pharmacology community will continue to base their analyses on
pharmacological principles and will gradually build in new ML el-
ements to their workflow, strengthening their models further. In
addition, the clinical pharmacology community will be able to en-
hance the range of questions they are able to address by using ML
approaches.
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