
ANFÄNGERPRAKTIKUM
NEURAL NETWORKS FROM SCRATCH

INTRODUCTION
Hendrik Borras, Franz Kevin Stehle

hendrik.borras@ziti.uni-heidelberg.de, kevin.stehle@ziti.uni-heidelberg.de
HAWAII Group, Institute of Computer Engineering

Heidelberg University

ABOUT US

2

From: database engineer, HW designer
(ASICS, FPGA), HPC

To: vertically integrated approach to
efficient ML => HW systems for AI

Neural Architectures

Compiler

Plethora of HW

perf [
ops
s

] = p[Watt] ⋅ e[
ops

J
] P = afCV 2 + V Ileakage

xl = Φ(W ⊕ xl−1 + bl)

ML APPLICATIONS

3

Language
Processing Robotics

Speech

Recognition
Image

Processing

MODERN ML
Image & video:
classification, object
localization &
detection

Speech and language:
speech recognition,
natural language
processing

Medical: imaging,
genetics, disease
prediction

Other: playing of
video games, robotics

4
Artificial Neural Networks (ANNs) deliver state-of-the-art accuracy for many AI tasks

… at the cost of extremely high computational complexity

IMAGENET: 1000 classes

ImageNet Top-1 Error

2011

2012

2015

2016

2019

2024

0,0 % 12,5 % 25,0 % 37,5 % 50,0 %

Pre-DNN

AlexNet

FixResNeXt-101 32x48d

ResNet-152

FixResNeXt-101 32x48d:
Training: ~ O(1020) OPs total

Inference: ~ O(1012) OPs/sample

Inception v4

OmniVec (Vision Transformer)

DATASET COMPARISON
Type Dataset

Samples Dataset Size

MNIST Image 60k train
+ 10k test ~ 45 MB

CIFAR-10 Image 50k train
+ 10k test ~ 176 MB

ILSVRC2015 Image 1.38M ~ 150 GB

FineVideo Video 43k ~ 600 GB
(3.4k hours)

The Pile Text 211M
(documents) ~ 825 GB

LLAMA
Pretraining Sets Text ~ 4.7 TB

5

Trains on a reasonable
laptop in ~ 10min

Trains in ~ 3 weeks on
2k A100 GPUs consuming

~ 449 MWh [1]

[1] Touvron, H., “LLaMA: Open and Efficient Foundation Language Models”, arXiv e-prints, Art. no. arXiv:2302.13971,
2023. doi:10.48550/arXiv.2302.13971.

ORGANIZATION

OBJECTIVES
Objectives: The students …

… learn about the mathematical foundations of machine learning

… start applying their skills by implementing a basic model that learns to perform
the XOR operation

… continue on to multi-layered models by implementing a multi-layer perceptron
(MLP) from scratch

… experience first-hand the requirement of using parallel architectures, in our
case GPUs, when scaling up neural networks and learn how to bring their models
to the GPU

… apply their acquired knowledge on more complex architectures by
implementing a Transformer model from scratch

… implement a more complex models/techniques based on their acquired
knowledge as their final project

7

METHODS & PREREQUISITES
Methodology

• Strong focus on learning from hands-on experience

• Learning to implement neural networks starting with pure Python without any additional
packages, with usage of the common numerical packages (numpy, CuPy, Scikit-learn) following
after -> Allows for a look under the hood not easily possible using modern ML libraries

• Students can choose from a large selection of final project topics based on their specific personal
interests

Prerequisites
Passed exams in:

• Einführung in die Praktische Informatik (IPI)

• Programmierkurs (IPK)

• Lineare Algebra 1 (MA4) oder Mathematik für Informatik 1 (IMI1)

Practical experience:

• Intermediate proficiency in Python

8

ORGANIZATION
Lectures – 2 hours/week

Lecturers:

Hendrik Borras (hendrik.borras@ziti.uni-heidelberg.de)

Kevin Stehle (kevin.stehle@ziti.uni-heidelberg.de)

Time: Wednesday, 14:00 ct

Exercises
Groups of 2 or 3 students

Tutorial: Wednesday, after the lecture

Mixture of reading/exercises/programming/experiments

Project-Based Grading
Work to be done in groups – individual work must be visible

Students implement, document, and present an ML program

Grades are determined by the quality of the project, report, and presentation

9

mailto:hendrik.borras@ziti.uni-heidelberg.de
mailto:kevin.stehle@ziti.uni-heidelberg.de

ASSIGNMENTS

Practical exercises: Coding, experiments, and reading

Reading & feedback based on paper review
Ideal review here is 2 sentences for each of the following:

1. Primary contribution

2. Key insight of the contribution

3. Your opinion/reaction to the content

Review: rating relative to all other papers (of this venue)

Strong reject, weak reject, weak accept, strong accept

“Old” papers: Optionally give an opinion on how correct the work was in
hindsight

10

AGENDA

11

Datum Vorlesung Übung

23.10 Einführung Reading + Polynomial curve fitting

30.10 XOR learning & Visualization XOR learning + Visualization with WandB

6.11 NN/MLP learning MLP from scratch

13.11 GPUs Cluster access and GPU acceleration (CuPy or cuda-numba)

20.11 Attention & Transformers Transformer from scratch + Project proposals

27.11 Project proposal discussion and kick-off

… N-times Project updates and questions

KW 8? Poster session

ADDITIONAL MATERIAL
Papers

Badillo et al.: An Introduction to Machine Learning (https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/
cpt.1796)

Vaswani et al.: Attention Is All You Need (https://arxiv.org/abs/1706.03762)

Horowitz: Computing's energy problem (and what we can do about it) (https://ieeexplore.ieee.org/document/
6757323)

Textbooks
Goodfellow et al.: Deep Learning (https://www.deeplearningbook.org)

Tunstall, Lewis: Natural Language Processing with Transformers (en: https://katalog.ub.uni-heidelberg.de/cgi-bin/
titel.cgi?katkey=68944723, de: https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=69054303)

Alammar, Grootendorst: Hands-On Large Language Models (https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?
katkey=ext_FETCH-LOGICAL-p892-d8d60503679c7f2b78a36513f71ff1195247d65c3c983e61ae98b4d6692e36293)

Hwu et al.: Programming Massively Parallel Processors (https://www.sciencedirect.com/book/9780323912310/
programming-massively-parallel-processors)

Other
Deep Learning Cheat Sheet (https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning)

12

https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796
https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796
https://arxiv.org/abs/1706.03762
https://ieeexplore.ieee.org/document/6757323
https://ieeexplore.ieee.org/document/6757323
https://www.deeplearningbook.org
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68944723
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68944723
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=69054303
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=ext_FETCH-LOGICAL-p892-d8d60503679c7f2b78a36513f71ff1195247d65c3c983e61ae98b4d6692e36293
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=ext_FETCH-LOGICAL-p892-d8d60503679c7f2b78a36513f71ff1195247d65c3c983e61ae98b4d6692e36293
https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=ext_FETCH-LOGICAL-p892-d8d60503679c7f2b78a36513f71ff1195247d65c3c983e61ae98b4d6692e36293
https://www.sciencedirect.com/book/9780323912310/programming-massively-parallel-processors
https://www.sciencedirect.com/book/9780323912310/programming-massively-parallel-processors
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

ADDITIONAL MATERIAL

https://csg.ziti.uni-
heidelberg.de/teaching/
ap_nn_from_scratch_materials/

Uploaded here:
Exercises

Lecture slides

Additional materials

13

https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/
https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/
https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/

LINEAR AND POLYNOMIAL REGRESSION

Learning, generalization, model selection, regularization, overfitting

With material from Andrew Ng (CS229 lecture notes) and Christopher Bishop
(Pattern Recognition and Machine Learning)

SUPERVISED LEARNING

Based on the given housing data, is it possible to
learn to predict the costs of other houses?

➡Prediction of “Unseen data”

Notation
• : Input features of sample

• : Target variable (or output variable or label) of sample

• : Training sample (or observation)

• Training set: set of all training samples (size)

Supervised learning problem: find good prediction
function

• (theta) are the parameters (weights) of the model

• Classification (discrete) vs. regression (continuous) problem

x(i) i
t(i) i
(x(i), t(i)) i

N

y = hθ(x)
θ

15

Training set

Learning algorithm

hθx y

LINEAR REGRESSION

Supervised learning: choose function

Simplification given model parameters:

 (model intercept by)

Learning: make close to for the training samples we have

Cost (or error or loss) function “how close is that”:

Least-squares method to find the optimal parameters by minimizing this sum of squared residuals

x = (x1, x2)T = [x1
x2] ∈ ℝ2

h
y = hθ(x) = θ0 + θ1x1 + θ2x2

D

hθ(x) = h(x) =
D

∑
d=1

θdxd = θTx θ0 x0 = 1

h(x) t N

J(θ) =
1
2

N

∑
n=1

(hθ(x(n)) − t(n))2

16

GRADIENT DESCENT
Choose such that is minimal

Start with initial guess of , repeatedly perform gradient descent:

, simultaneously for all and learning rate

Hint: remember chain rule of calculus - for ,

=> Update rule:

Magnitude of update is proportional to error term

Which set of the training samples (elements) to consider for one update?

θ J(θ)
θ

θd := θd − α
∂

∂θd
J(θ) d = 1,...,D α

∂
∂θd

J(θ) =
∂

∂θd

1
2

N

∑
n=1

(hθ(x) − t)2 =
2
2

N

∑
n=1

(hθ(x) − t) ⋅
∂

∂θd
((

D

∑
i=1

θixi) − t) =
N

∑
n=1

(hθ(x) − t)xd

f(x) = u(v(x)) f′￼(x) = u′￼(v(x))v′￼(x)

θd := θd + α∑
n

(t(n) − hθ(x(n)))x(n)
d

n
17

BATCH GRADIENT DESCENT
Only one global optima as is a convex
quadratic function

Batch gradient descent:

Repeat until convergence

Looks at every training sample ()
on every step

Number of steps depend on convergence

Guaranteed to be optimal, but expensive

J

∀d ∈ D

θd := θd + α
N

∑
n=1

(t(n) − hθ(x(n)))x(n)
d

∀n ∈ N

18

Cost function

STOCHASTIC (INCREMENTAL) GRADIENT DESCENT

Scanning the complete data set for every
step can be costly

Stochastic gradient descent is based on
randomly selecting training samples to
perform gradient descent

for all n in N:

Repeat until convergence

Makes progress for each training sample

θd := θd + α(t(n) − hθ(x(n)))x(n)
d ; ∀d ∈ D

19

Cost function

POLYNOMIAL CURVE FITTING
Training set: observations of and

Ground truth: , but (Gaussian) noise present

Many data sets have an underlying regularity, but observations
are corrupted by random noise

Objective: make good predictions of new values
Generalize from a finite data set

Model: polynomial function of order of

Although is a nonlinear function of , it is a linear
function of the coefficients => linear model

N x = (x1, . . . , xN)T

t = (t1, . . . , tN)T

t = sin(2πx)

̂y ̂x

M

h(x, w) = w0 + w1x + w2x2 + . . . + wMxM =
M

∑
m=0

wmxm

h(x, w) x
w

20

FITTING
Determine the coefficients by fitting to
training samples

Minimize error function

Again: quadratic function of coefficients

=> partial derivates (with respect to the coefficients)
are linear in the elements of

=> unique solution

But what about order ?
=> model selection

w N

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2

w

w
w*

M

21

h(x, w) =
M

∑
m=0

wmxm

MODEL SELECTION

22

GENERALIZATION AND OVERFITTING
Good generalization: making accurate
predictions for new (unseen) data

• Test set: here generated the same way as training
set

• Usual procedure: Split dataset into training, test
(and sometimes validation) sets, with the test set
remaining unknown to the model during training
(Very important!)

Identify overfitting

• Training error: for the training set

• Test error: for the test set

• If datasets are of different size:

E(w*)
E(w*)

ERMS = 2E(w)/N

23

MODEL SELECTION DEPENDS ON DATA SET SIZE

24N=10 N=100

REGULARIZATION
Regularization can control overfitting by adding
a penalty term to the error function

where

 governs the relative importance of the
regularization term

Such shrinkage methods reduce the value of the
coefficients

Quadratic regularizer: ridge regression or
weight decay or L2 regularization

Validation set to optimize either or

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2 +
λ
2

∥w∥

∥w∥ = wTw
λ

M λ
25

WRAPPING UP

SUMMARY
This course: Teaches how Neural
Networks actually work under the hood

Linear regression example
• Parameters and how they are learned

• Generalization and model selection

• Overfitting and regularization

• Linear models are not universal
approximators

Artificial Neural Networks (ANNs) are
universal approximators, but their gains
are paid in higher computational
complexity and lower interpretability

27

Er
ro

r

Model “complexity”

<- Underfitting Overfitting ->

Best fit

Test e
rro

r

Training error

Data “complexity”

SHORT 5 MIN BREAK

THEN: EXERCISE AND PROJECT GROUPS

FORMALITIES

Exercises and Projects are to be done in groups

Exercises are not graded
However: A group must submit solutions for at least 2/3 of the exercises

Hands-on part of the first part of the practical

Ensure consistent knowledge between the groups

Solutions are to be submitted digitally via E-Mail

In the tutorial (i.e. here) solutions are presented and discussed

Group assignment: Next slide

29

GROUP ASSIGNMENT

Please choose a group now
Fill out the form, that’s being passed around

Groups of 2 to 3 members are allowed

Please inform us about changes in your group

30

THIS WEEKS EXERCISE

Reading one paper and writing a review
Try to write a short and concise review!
(significantly less than one page)

See guidelines from the lecture

Polynomial curve fitting
Become accustomed to Python and array/tensor
notation with numpy

Overfitting example from the lecture

31

https://csg.ziti.uni-heidelberg.de/
teaching/ap_nn_from_scratch_materials/

https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/
https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/

