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From: database engineer, HW designer 
(ASICS, FPGA), HPC

To: vertically integrated approach to 
efficient ML => HW systems for AI
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ML APPLICATIONS
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MODERN ML
Image & video: 
classification, object 
localization & 
detection 

Speech and language: 
speech recognition, 
natural language 
processing 

Medical: imaging, 
genetics, disease 
prediction 

Other: playing of 
video games, robotics
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Artificial Neural Networks (ANNs) deliver state-of-the-art accuracy for many AI tasks 

… at the cost of extremely high computational complexity

IMAGENET: 1000 classes

ImageNet Top-1 Error

2011

2012

2015

2016

2019

2024

0,0 % 12,5 % 25,0 % 37,5 % 50,0 %

Pre-DNN

AlexNet

FixResNeXt-101 32x48d 

ResNet-152


FixResNeXt-101 32x48d: 
Training: ~ O(1020) OPs total 

Inference: ~ O(1012) OPs/sample

Inception v4


OmniVec (Vision Transformer)



DATASET COMPARISON
Type Dataset 

Samples Dataset Size

MNIST Image 60k train 
+ 10k test ~ 45 MB

CIFAR-10 Image 50k train 
+ 10k test ~ 176 MB

ILSVRC2015 Image 1.38M ~ 150 GB

FineVideo Video 43k ~ 600 GB 
(3.4k hours)

The Pile Text 211M 
(documents) ~ 825 GB

LLAMA 
Pretraining Sets Text ~ 4.7 TB
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Trains on a reasonable 
laptop in ~ 10min

Trains in ~ 3 weeks on 
2k A100 GPUs consuming 

~ 449 MWh [1]

[1] Touvron, H., “LLaMA: Open and Efficient Foundation Language Models”, arXiv e-prints, Art. no. arXiv:2302.13971, 
2023. doi:10.48550/arXiv.2302.13971.



ORGANIZATION



OBJECTIVES
Objectives: The students … 

… learn about the mathematical foundations of machine learning 

… start applying their skills by implementing a basic model that learns to perform 
the XOR operation 

… continue on to multi-layered models by implementing a multi-layer perceptron 
(MLP) from scratch 

… experience first-hand the requirement of using parallel architectures, in our 
case GPUs, when scaling up neural networks and learn how to bring their models 
to the GPU 

… apply their acquired knowledge on more complex architectures by 
implementing a Transformer model from scratch 

… implement a more complex models/techniques based on their acquired 
knowledge as their final project
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METHODS & PREREQUISITES
Methodology 

• Strong focus on learning from hands-on experience 

• Learning to implement neural networks starting with pure Python without any additional 
packages, with usage of the common numerical packages (numpy, CuPy, Scikit-learn) following 
after -> Allows for a look under the hood not easily possible using modern ML libraries 

• Students can choose from a large selection of final project topics based on their specific personal 
interests 

Prerequisites 
Passed exams in: 

• Einführung in die Praktische Informatik (IPI) 

• Programmierkurs (IPK) 

• Lineare Algebra 1 (MA4) oder Mathematik für Informatik 1 (IMI1) 

Practical experience: 

• Intermediate proficiency in Python
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ORGANIZATION
Lectures – 2 hours/week 

Lecturers:  

Hendrik Borras (hendrik.borras@ziti.uni-heidelberg.de) 

Kevin Stehle (kevin.stehle@ziti.uni-heidelberg.de) 

Time: Wednesday, 14:00 ct 

Exercises 
Groups of 2 or 3 students 

Tutorial: Wednesday, after the lecture 

Mixture of reading/exercises/programming/experiments 

Project-Based Grading 
Work to be done in groups – individual work must be visible 

Students implement, document, and present an ML program 

Grades are determined by the quality of the project, report, and presentation
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ASSIGNMENTS

Practical exercises: Coding, experiments, and reading 

Reading & feedback based on paper review 
Ideal review here is 2 sentences for each of the following: 

1. Primary contribution 

2. Key insight of the contribution 

3. Your opinion/reaction to the content 

Review: rating relative to all other papers (of this venue) 

Strong reject, weak reject, weak accept, strong accept 

“Old” papers: Optionally give an opinion on how correct the work was in 
hindsight
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AGENDA
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Datum Vorlesung Übung

23.10 Einführung Reading + Polynomial curve fitting

30.10 XOR learning & Visualization XOR learning + Visualization with WandB

6.11 NN/MLP learning MLP from scratch

13.11 GPUs Cluster access and GPU acceleration (CuPy or cuda-numba)

20.11 Attention & Transformers Transformer from scratch + Project proposals

27.11 Project proposal discussion and kick-off

… N-times Project updates and questions

KW 8? Poster session



ADDITIONAL MATERIAL
Papers 

Badillo et al.: An Introduction to Machine Learning (https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/
cpt.1796) 

Vaswani et al.: Attention Is All You Need (https://arxiv.org/abs/1706.03762) 

Horowitz: Computing's energy problem (and what we can do about it) (https://ieeexplore.ieee.org/document/
6757323) 

Textbooks 
Goodfellow et al.: Deep Learning (https://www.deeplearningbook.org)  

Tunstall, Lewis: Natural Language Processing with Transformers (en: https://katalog.ub.uni-heidelberg.de/cgi-bin/
titel.cgi?katkey=68944723, de: https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=69054303) 

Alammar, Grootendorst: Hands-On Large Language Models (https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?
katkey=ext_FETCH-LOGICAL-p892-d8d60503679c7f2b78a36513f71ff1195247d65c3c983e61ae98b4d6692e36293) 

Hwu et al.: Programming Massively Parallel Processors (https://www.sciencedirect.com/book/9780323912310/
programming-massively-parallel-processors) 

Other 
Deep Learning Cheat Sheet (https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning)
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ADDITIONAL MATERIAL

https://csg.ziti.uni-
heidelberg.de/teaching/
ap_nn_from_scratch_materials/ 

Uploaded here: 
Exercises 

Lecture slides 

Additional materials 
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LINEAR AND POLYNOMIAL REGRESSION

Learning, generalization, model selection, regularization, overfitting 

With material from Andrew Ng (CS229 lecture notes) and Christopher Bishop 
(Pattern Recognition and Machine Learning)



SUPERVISED LEARNING

Based on the given housing data, is it possible to 
learn to predict the costs of other houses? 

➡Prediction of “Unseen data” 

Notation 
• : Input features of sample  

• : Target variable (or output variable or label) of sample  

• : Training sample (or observation)  

• Training set: set of all training samples (size ) 

Supervised learning problem: find good prediction 
function  

•  (theta) are the parameters (weights) of the model 

• Classification (discrete) vs. regression (continuous) problem

x(i) i
t(i) i
(x(i), t(i)) i

N

y = hθ(x)
θ
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Training set

Learning algorithm

hθx y



LINEAR REGRESSION

 

Supervised learning: choose function   

 

Simplification given  model parameters:  

 (model intercept  by ) 

Learning: make  close to  for the  training samples we have 

Cost (or error or loss) function “how close is that”:  

Least-squares method to find the optimal parameters by minimizing this sum of squared residuals

x = (x1, x2)T = [x1
x2] ∈ ℝ2

h
y = hθ(x) = θ0 + θ1x1 + θ2x2

D

hθ(x) = h(x) =
D

∑
d=1

θdxd = θTx θ0 x0 = 1

h(x) t N

J(θ) =
1
2

N

∑
n=1

(hθ(x(n)) − t(n))2
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GRADIENT DESCENT
Choose  such that  is minimal 

Start with initial guess of , repeatedly perform gradient descent: 

, simultaneously for all  and learning rate  

 

Hint: remember chain rule of calculus - for ,  

=> Update rule:  

Magnitude of update is proportional to error term 

Which set of the training samples (elements ) to consider for one update?

θ J(θ)
θ

θd := θd − α
∂

∂θd
J(θ) d = 1,...,D α

∂
∂θd

J(θ) =
∂

∂θd

1
2

N

∑
n=1

(hθ(x) − t)2 =
2
2

N

∑
n=1

(hθ(x) − t) ⋅
∂

∂θd
((

D

∑
i=1

θixi) − t) =
N

∑
n=1

(hθ(x) − t)xd

f(x) = u(v(x)) f′￼(x) = u′￼(v(x))v′￼(x)

θd := θd + α∑
n

(t(n) − hθ(x(n)))x(n)
d

n
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BATCH GRADIENT DESCENT
Only one global optima as  is a convex 
quadratic function  

Batch gradient descent:  

 

Repeat until convergence  

Looks at every training sample ( ) 
on every step 

Number of steps depend on convergence 

Guaranteed to be optimal, but expensive

J

∀d ∈ D

θd := θd + α
N

∑
n=1

(t(n) − hθ(x(n)))x(n)
d

∀n ∈ N
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Cost function



STOCHASTIC (INCREMENTAL) GRADIENT DESCENT

Scanning the complete data set for every 
step can be costly 

Stochastic gradient descent is based on 
randomly selecting training samples to 
perform gradient descent 

for all n in N: 

 

Repeat until convergence  

Makes progress for each training sample

θd := θd + α(t(n) − hθ(x(n)))x(n)
d ; ∀d ∈ D
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Cost function



POLYNOMIAL CURVE FITTING
Training set:  observations of  and 

 

Ground truth: , but (Gaussian) noise present 

Many data sets have an underlying regularity, but observations 
are corrupted by random noise 

Objective: make good predictions  of new values  
Generalize from a finite data set 

Model: polynomial function of order of  

 

Although  is a nonlinear function of , it is a linear 
function of the coefficients  => linear model

N x = (x1, . . . , xN)T

t = (t1, . . . , tN)T

t = sin(2πx)

̂y ̂x

M

h(x, w) = w0 + w1x + w2x2 + . . . + wMxM =
M

∑
m=0

wmxm

h(x, w) x
w
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FITTING
Determine the coefficients  by fitting to  
training samples 

Minimize error function  

Again: quadratic function of coefficients   

=> partial derivates (with respect to the coefficients) 
are linear in the elements of   

=> unique solution  

But what about order ? 
=> model selection

w N

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2

w

w
w*

M
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h(x, w) =
M

∑
m=0

wmxm



MODEL SELECTION
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GENERALIZATION AND OVERFITTING
Good generalization: making accurate 
predictions for new (unseen) data 

• Test set: here generated the same way as training 
set 

• Usual procedure: Split dataset into training, test 
(and sometimes validation) sets, with the test set 
remaining unknown to the model during training 
(Very important!) 

Identify overfitting 

• Training error:  for the training set 

• Test error:  for the test set 

• If datasets are of different size:

E(w*)
E(w*)

ERMS = 2E(w)/N
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MODEL SELECTION DEPENDS ON DATA SET SIZE
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REGULARIZATION 
Regularization can control overfitting by adding 
a penalty term to the error function 

 

where  

 governs the relative importance of the 
regularization term 

Such shrinkage methods reduce the value of the 
coefficients 

Quadratic regularizer: ridge regression or 
weight decay or L2 regularization 

Validation set to optimize either  or 

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2 +
λ
2

∥w∥

∥w∥ = wTw
λ

M λ
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WRAPPING UP



SUMMARY
This course: Teaches how Neural 
Networks actually work under the hood 

Linear regression example 
• Parameters and how they are learned 

• Generalization and model selection 

• Overfitting and regularization 

• Linear models are not universal 
approximators 

Artificial Neural Networks (ANNs) are 
universal approximators, but their gains 
are paid in higher computational 
complexity and lower interpretability
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SHORT 5 MIN BREAK 

THEN: EXERCISE AND PROJECT GROUPS



FORMALITIES

Exercises and Projects are to be done in groups 

Exercises are not graded 
However: A group must submit solutions for at least 2/3 of the exercises 

Hands-on part of the first part of the practical 

Ensure consistent knowledge between the groups 

Solutions are to be submitted digitally via E-Mail 

In the tutorial (i.e. here) solutions are presented and discussed 

Group assignment: Next slide
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GROUP ASSIGNMENT

Please choose a group now 
Fill out the form, that’s being passed around 

Groups of 2 to 3 members are allowed 

Please inform us about changes in your group
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THIS WEEKS EXERCISE

Reading one paper and writing a review 
Try to write a short and concise review! 
(significantly less than one page) 

See guidelines from the lecture 

Polynomial curve fitting 
Become accustomed to Python and array/tensor 
notation with numpy 

Overfitting example from the lecture

31

https://csg.ziti.uni-heidelberg.de/
teaching/ap_nn_from_scratch_materials/

https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/
https://csg.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials/

