How To CLUSTER DANIEL BARLEY

A quick reference guide for working with the brook cluster. Code prefaced by a $-sign
is to be interpreted as a shell command. When entering a command the $ is not to be
retyped into the terminal. Text inside <...> has to be modified.

0.1 Brief System Description

e Head node: csg-headnode
e 2 compute nodes to be used for the lecture: csg-brook01 and csg-brook02

— CPU: AMD EPYC 7351P
— RAM: 256 GB
— GPU: 8x Nvidia RTX 2080Ti

e Interconnect: Gigabit Ethernet

1 ssh

1.1 Basic Login

The easiest way (not necessarily the most convenient) to connect to a remote machine is
via invocation of the basic ssh command from the terminal. Linux, Mac, and BSD users
should have ssh installed by default. Windows users can use the Windows Subsystem
for Linux (WSL) to open a bash prompt or alternatively use the program PuTTY'. ssh
expects a username and a hostname separated by an @ symbol. The username corresponds
to your group number, e.g. em103, gpu08.

The cluster headnode is reachable only from the Ziti internal network directly. From
the university network you have to use a proxy. For that purpose we have a gate server
zitigate.ziti.uni-heidelberg.de. Use:

$ ssh <username>Q@zitigate.ziti.uni-heidelberg.de

to connect to it. After successfully entering your password you should be greeted by
a command prompt. To close the session simply type exit, Ctrl-D, or just close your
terminal emulator.

Note that this system is very restrictive and only meant to be used as a jump host. All
the compute tasks should be run on the headnode and the cluster compute nodes.

To jump to the cluster headnode run the following on the gate:

$ ssh <username>@csg-headnode

Always use the head node csg-headnode to perform typical auxiliary tasks like com-
pilation. The other nodes: csg-brook{01,02}, csg-octane{02..08} are reserved for
compute tasks.

"https://www.chiark.greenend.org.uk/~sgtatham/putty/

Hardware and Artificial Intelligence Lab — Hawaii 1

https://www.chiark.greenend.org.uk/~sgtatham/putty/

How To CLUSTER DANIEL BARLEY

1.2 (Optional) Configuration File

Retyping the above command can become tedious over time. By using an ssh configuration
file this can be shortened, however. Under Linux, Mac, and BSD you can edit (or create if
it not yet exists) a config file for ssh under $HOME/ . ssh/config. The file follows a simple
syntax (see here for extensive information). A Basic example is listed below:

Listing 1: Basic ssh configuration file

Host zitigate
HostName zitigate.ziti.uni-heidelberg.de
User <username>
Host headnode
HostName csg-headnode
User <username>
ProxyJump zitigate

Now you can simply use:

$ ssh headnode

You will still be prompted for a password though. PuTTY users can just save the con-
nection via the GUI.

1.3 (Optional for shell users) Login Without Password

To avoid having to reenter your password every time you log on, you can use an ssh-key
for authentication. First create a new ssh-key pair via:

$ ssh-keygen -t ed25519

This will prompt you for a filename. You can call the key whatever you like. I would
suggest naming it something like eml-lecture for easy identification. This will create
two files: a private key <your-key-file> and a public key <your-key-file>.pub Next,
copy the key to the server’s authorized keys. Because zitigate runs rbash, exec calls
and pipes are not allowed. This means you can not use the ssh-copy-id command to
copy your key. Instead do the following, (Listing 2 shows the commands):

1. Copy the contents of your public key (ends with .pub!!) to your clipboard.
2. Log on to zitigate with your password.

3. If it does not exist, create a directory called ~/.ssh

4. set the correct permissions for that directory (700)

5. create or edit a file called authorized_keys inside ~/.ssh using your preferred
editor. (nano, vi, and joe are installed. If you don’t know which one to pick,
choose nano)

6. Copy your public key from the clipboard to the editor and save the file (<CTRL-X>
in nano, then press y to save changes if prompted).

Hardware and Artificial Intelligence Lab — Hawaii 2

https://www.ssh.com/academy/ssh/config

How To CLUSTER DANIEL BARLEY

Listing 2: Authorize the key

ssh <username>Q@zitigate.ziti.uni-heidelberg.de

mkdir -pv ~/.ssh

chmod 700 ./ssh

nano ./ssh/authorized_keys
-> Copy key to file, close with <CTRL-X>, confirm with <y>
$ chmod 600 ./ssh/authorized_keys

| A A &H &+H

Make sure you do not overwrite your teammates’ keys!
You can instruct ssh to use your key automatically by editing your ssh-config:

Listing 3: ssh config with automatic login

Host zitigate
HostName zitigate.ziti.uni-heidelberg.de
User <username>
IdentityFile <path-to-your-keyfile>
Host headnode
HostName csg-headnode
User <username>
IdentityFile <path-to-your-keyfile>
ProxyJump zitigate

You should now be able to automatically log in via:

$ ssh headnode

2 Slurm

You don’t have direct access to the cluster’s compute nodes. Instead, Slurm is used as a
workload manager. Slurm handles your jobs and distributes them among the compute-
nodes according to your specification. Slurm takes care of allocating resources and
scheduling jobs. For more information on Slurm see here.

There are several so-called partitions: all, brook, octane, exercise-eml, exercise
— -hpdc, exercise-gpu. You only have access to the exercise partition and compute
nodes csg-brook{01,02}. There is also a default job time limit of 12h for EML and
4h for GPU/HPDC. Usually, if your Job takes longer than the limit something is going
wrong.

Use the sinfo command to see the available nodes and their status.

2.1 (Basic) Running Jobs

You can start jobs by using the srun command:

$ srun [-p <partition>] [-w <node>] --pty -- <command>

Hardware and Artificial Intelligence Lab — Hawaii 3

https://slurm.schedmd.com/overview.html

How To CLUSTER DANIEL BARLEY

Please choose the appropriate partition for your lecture (exercise-eml, exercise-gpu,
exercise-hpdc). To request specific nodes, use -w which accepts a single node or a
comma separated list of node names.

Tip: use sinfo and squeue to see if a node is currently blocked by another group.

2.2 Consumable Resources

Resources like GPUs and CPU cores can be requested using the --gres option. Check
the message of the day when logging in for more details.
The following will command will allocate a GPU.

srun --gres=gpu:1l <...>

More CPU cores can also be requested.

srun --cpus-per-task 8 <...>

2.3 Canceling Jobs

If you want to terminate a job, e.g. due to a deadlock or other error, use the squeue
command to get its job ID. To see only jobs started by you provide your username with
the u option:

$ squeue -u <username>

Once you have identified the job’s ID use:

$ scancel <jobid>

to stop the job.

2.4 (Advanced) Running Jobs

Slurm supports special shell scripts called sbatch files. These work like normal shell
scripts but may contain special instructions for Slurm that are prefaced by #SBATCH. The
corresponding command is sbatch:

$ sbatch <batch-file>

This is especially handy for starting multiple jobs with different launch parameters with
one command. See also this very good summary of how to use srun and sbatch.

2.5 Conda — Software Environment Management EML

We use conda to manage different versions of software available. Use

$ conda activate eml

to enable the default PyTorch environment used for the EML lecture.
You may be prompted on first use to run

Hardware and Artificial Intelligence Lab — Hawaii 4

https://hpc.nmsu.edu/discovery/slurm/slurm-commands/

How To CLUSTER DANIEL BARLEY

$ conda init <bash|zsh>

depending on your login shell. This will modify your .bashrc/.zshrc file to load the
appropriate paths and will change your prompt to show the currently loaded environment.

(base) csg-headnode’ conda activate eml
(eml) csg-headnode¥

2.6 Spack — Software Environment Management GPU/HPDC

Additionally we use Spack to manage all non-Python software, especially CUDA instal-
lations. Specifically for CUDA development, there exists a special environment. Spack
environment work similar to conda. Use

$ spack env activate cuda
$ spack load cuda@<version>

To activate the CUDA environment and load a specific version of CUDA. Installed ver-
sions are cuda@11.8.0 cuda@12.1.1 cuda®12.4.0 cuda@12.5.0. Now tools like nvcc,
cuda-gdb, cuobjdump etc. are available.

3 Editing and File Transfer

There are multiple ways to get your programs and results to and from the cluster.

3.1 Editing Locally

You can edit your files on the head-node directly from the terminal. The editors (neo)vim
and nano are preinstalled. If you are unfamiliar with vim, nano should be more straight
forward.

$ nano <file>

3.2 scp

scp is both the name of the protocol and program used for copying files between remote
machines using ssh. It works exactly like its local counterpart cp. If you want to copy a
file from your local pc to the cluster use:

$ scp <file> headnode:<path-to-destination>

This also works in the other direction. If you want to copy a file back from the headnode
use:

$ scp headnode:<path-to-file> <file>

NOTE: if you want to copy a folder do not forget to use the -r flag to recursively copy
subdirectories and files.

Hardware and Artificial Intelligence Lab — Hawaii 5

https://www.vim.org/
https://www.nano-editor.org/
https://linux.die.net/man/1/scp

How To CLUSTER DANIEL BARLEY

3.3 rsync

A more sophisticated option to copy files is rsync. rsync not only copies files, but also
keeps track of changes like a version control system. It will not re-copy edited files but
simply send a diff to the remote host which will update the file accordingly. Please read
the documentation for usage. A basic example:

$ rsync -r --update <folder> headnode:<path-to-destination>

3.4 sshfs

You can also mount your development folder directly to your file system using sshfs. This
has the added benefit that you can edit all of your files directly in your favorite editor or
IDE on your local machine. Depending on your network connection this can be flaky at
times. You may want to pass the —o reconnect option to automatically reconnect if the
connection is lost.

First create a mount-point for the remote file system, e.g.:

$ mkdir mnt-remote

Then mount the remote file system:

$ sshfs headnode:<path-to-folder> mnt-remote

Again consult the linked wiki article for more information on the options etc.

3.5 Using VS Code with SSH Extension

Visual Studio Code (VS Code) provides an SSH extension that enables you to work
directly on the cluster by connecting to it via SSH. This allows you to use all the features
of VS Code, including extensions and version control, as if you were working locally.
Follow these steps to set it up:

1. Install the SSH extension in VS Code. You can find it by searching for ”Remote -
SSH” in the Extensions Marketplace.

2. Open the Command Palette in VS Code by pressing Ctr1+Shift+P (or Cmd+Shift+P
on macOS) and select Remote-SSH: Connect to Host....

3. Enter the SSH command that connects to the cluster head node, for example: (if
you have set up the config file as described in Section 1.2 you can choose the
csg-headnode alias in a dropdown menu)

ssh -J <username>Q@zitigate.ziti.uni-heidelberg.de <
— username >Q@csg-headnode

4. If this is your first time connecting, you may need to add the host to your known_hosts
file.

Hardware and Artificial Intelligence Lab — Hawaii 6

https://download.samba.org/pub/rsync/rsync.1
https://wiki.archlinux.org/title/SSHFS

How To CLUSTER DANIEL BARLEY

5. After connecting, VS Code will open a new window connected to the remote system.
You can navigate to the folder you want to work in using the File Explorer panel.

6. You can now open, edit, and save files directly on the cluster. Use the integrated
terminal within VS Code to execute commands on the remote machine as needed.

Note: If you set up SSH keys as described in Section 1.3, VS Code will automatically
use them, so you won’t need to enter your password each time.

This method is especially useful if you prefer to work in a GUI environment and benefit
from VS Code’s code completion and debugging features. For more information, refer to
the official documentation on the VS Code website.

3.6 Windows

Windows users can follow this tutorial on how to use ssh and scp from the Windows
Powershell.

Hardware and Artificial Intelligence Lab — Hawaii 7

https://code.visualstudio.com/docs/remote/ssh
https://vipinyadav.com/blog/how-to-use-ssh-and-scp-windows-10-file-folder-upload/

	Brief System Description
	ssh
	Basic Login
	(Optional) Configuration File
	(Optional for shell users) Login Without Password

	Slurm
	(Basic) Running Jobs
	Consumable Resources
	Canceling Jobs
	(Advanced) Running Jobs
	Conda – Software Environment Management EML
	Spack – Software Environment Management GPU/HPDC

	Editing and File Transfer
	Editing Locally
	scp
	rsync
	sshfs
	Using VS Code with SSH Extension
	Windows

