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REMINDER: NEURAL NETWORKS ARE MASSIVE
MATRIX MULTIPLY CONSTRUCTS

WEIGHTED EDGES

PER NEURON, ﬁSURON
X() Wl Xl W2 y
G —— el ¢
INPUT HIDDEN OUTPUT  INPUT HIDDEN OUTPUT
LAYER LAYER LAYER LAYER LAYER LAYER

How do we execute this quickly and thus make it scalable?




GPU COMPUTING



GPU BACKGROUND

Primary use in gaming

Each console has a
(powerful) GPU

Meantime photorealistic

Graphics: big, multi- »
dimensional floating-point NVIDIA
operations in parallel

Programmable
Since ~2007 used for
general-purpose computing
CUDA

https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/ 4
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DIE SHOTS - CPU OR GPU?
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PERFORMANCE SCALING

Perf Instgzicl?:ans frequency CLASSICAL DENNARD
:yr—/ ﬁ: SCALING
x PipelineCount - PipelineDepth scales with feature size
6

Partly by Bill Dally, Sudha Yalamanchili (UCAA Workshop, 2012)



PERFORMANCE SCALING

Perf Instructz(ms - frequency CLASSICAL DENNARD

cycle

:r—/ ﬁ: SC.ALING

x PipelineCount - PipelineDepth scales with feature size

Perf(i) = Power(W) - Ef ficiency( e) POST DENNARD
—_— Y= SCALING

fixed ]

operator cost +  data movement cost

Partly by Bill Dally, Sudha Yalamanchili (UCAA Workshop, 2012)



PERFORMANCE SCALING
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POST-DENNARD: TRANSITION TO MASSIVELY
PARALLEL MICROARCHITECTURES

P = @fcvz T VIleakagelOC f3

Frequency reduction
In-order pipelines




POST-DENNARD: TRANSITION TO MASSIVELY
PARALLEL MICROARCHITECTURES

Instruction cache

P CV2 V I 3 Warp scheduler | Warp scheduler | Warp scheduler | Warp scheduler
- CIJf ‘ leakaqe CX f Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch

Interconnect

Register file
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Frequency reduction Massively parallel
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In-order pipelines Energy efficient



CUDA & GPU - OVERVIEW  ————

°’6 GFLOPS (DP)
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e = —
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NVIDIA CUDA

Compute kernel as C program

Explicit data- and thread-level parallelism

Computing, not graphics processing

Host communication |
Memory hierarchy NE— N henoRy | |

] INTE R F A ot
Host memory \668/5 7 ;

B | INTERFACE
GPU (device) memory | ee———cy |

GPU on-chip memory (later)

More HW details exposed \6 5
Use of pointers —

Load/store architecture
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Barrier synchronization of thread blocks \\65 GFLOPS (DP> MEMOQY 5
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HARDWARE ARCHITECTURE



GPU ARCHITECTURE TOP-LEVEL VIEW

SIMT Core Cluster @SIMT Core Cluster SIMT Core Cluster

SIMT SIMT SIMT SIMT e SIMT SIMT
Core Core Core Core Core Core

Interconnection Network

Memory Memory Memory
Controller Controller Controller

GPU

GDDR Module g GDDR Module GDDR Module

Off-chip memory




GPU ARCHITECTURE TOP-LEVEL VIEW

SIMT Core Cluster @SIMT Core Cluster SIMT Core Cluster

SIMT SIMT SIMT SIMT e SIMT SIMT
Core Core Core Core Core Core

Interconnection Network

Memory Memory Memory
Controller Controller Controller

GPU

GDDR Module g GDDR Module GDDR Module

Off-chip memory
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“NVIDIA-STYLE™ SIMT CORE CLUSTER

Warp Scheduler Warp Schedul:ﬂruction cach\:farp Scheduler Warp Scheduler S t re a m .i n g M u l t.i - P ro C e S S O r SM

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
. 3 . . - S I -

Register File (65,536 x 32-bit) Mu lti - t h read ed

4 4+ 4+ 4+ 3 3 42 4 4+ 4+ 4+ 4+ 4+ 3+ 4+ 2+ 2+ 4+ 2 4
Lo/sT SFU |[Core Core Core

SMX

Core Core Core Core Core Core Core Core Core

Core Core Core Core Core Core SFU [Core Core Core Core Core Core

Data parallel

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Capabilities
64K registers

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU [Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

192 simple cores (Integer and SP FPU)
64 DP FPUs
32 LSUs, 32 SFUs

Scheduling

64 KB Shared Memory / L1 Cache 4 Warp SChEdUlerS

48 KB Read-Only Data Cache

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU Core Core Core Core Core Core

Core Core Core Core Core Core SFU [Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core

Tex Tex

2-way dispatch per warp




SOFTWARE VIEW
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BULK-SYNCHRONOUS PARALLEL

In 1990, Valiant already described GPU computing bridoing
pretty well Mlgi(llleiliﬂiel

The success of the von Neumann model of

ial putation is attributable to the
fact that it is an cfficicnt bridge between and hard high-level lang
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
i the bulk-sy parallel (BSP) model as a candidate for this role, and

ts quantifying its efficiency both in impl ing high-]
nd algorithms, as well as in being i

Leslie G. Valiant, hjxmbridging model for
parallel computation, Communications of
the ACM, Volume 33 Issue 8, Aug. 1990

13



BULK-SYNCHRONOUS PARALLEL

o Ao
The success of the von Neumann model of

ial putation is attributable to the
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Ao

The success of the von Neumann model of
ial putation is attributable to the

fact that it is an cfficicnt bridge between and hard: high-level lang
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
i the bulk-sy parallel (BSP) model as a candidate for this role, and

ults quantifying its efficiency both in impl ing high-level 1
nd algorithms, as well as in being i

Compute, communicate, synchronize

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

Parallel slackness: # of virtual processors v, physical . ach vorume 35 isue 8, Ave. 1990
Drocessors p 1 1 1 )

. il Co'mun-ic‘on [ |
v = 1: not viable i =BI i_______
vV = p: unpromising wrt optimality : I I I
v >> p: leverage slack to schedule and pipeline computation "F “fgmere &
and communication efficiently vV V V ¥
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Ao
The success of the von Neumann model of
ial putation is attributable to the
fact that it is an cfficicnt bridge between and hard: high-level 1
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
i the bulk-sy parallel (BSP) model as a candidate for this role, and
ults quantifying its efficiency both in impl ing high-level 1.
nd algorithms, as well as in being i

Compute, communicate, synchronize

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

Parallel slackness: # of virtual processors v, physical . ach vorume 35 isue 8, Ave. 1990
Drocessors p

v = 1: not viable

vV = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation
and communication efficiently

Extremely scalable, bad for unbalanced parallelism

Communication
nnaiinansing 1




THE BEAUTY OF SIMPLICITY

Thread-collective computation
and memory accesses

Thread ID determines data element

GPU collaborative computing

One thread per output element

Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element

Output data set

14



THE BEAUTY OF SIMPLICITY

Thread-collective computation Output data set

and memory accesses

Thread ID determines data element

A

GPU collaborative computing

One thread per output element

Memory Compute

Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element

-> |f you do something on a GPU, do it collaboratively with all threads

14



SIMT EXECUTION MODEL

: w = bar[tid.x] + v;

Programmer sees
independent scalar threads

[llusion

GPU HW bundles threads
into warps

Warps run in lockstep on
vector-like hardware (SIMD)

How is divergent control
flow handled?
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Programmer sees
independent scalar threads
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GPU HW bundles threads
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PROGRAMMABILITY OF MASSIVE PARALLELIZATION

4x SIMD example

Instruction stream
Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: /V operations are independent

O
O
al
(C
+J
(C
O

Expressive: complex memory accesses (irregular strides)

16



PROGRAMMABILITY OF MASSIVE PARALLELIZATION

4x SIMD example

Instruction stream

Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: /V operations are independent

Data pool

Expressive: complex memory accesses (irregular strides)

Vector ISAs are bad
Orthogonal to multi-threading

Static in size, static in selection, mixed semantic model for
vector/scalar instructions, C/C++ is scalar

Vectorization

Multi-threading ”



ACCESSING MEMORY

Explicit memory hierarchy

Manual GPU memory fills &
spilling

Manual shared memory fills

Explicit memory hierarchy
simplifies coherence &
consistency

No guarantees except for

kernel completion boundaries :

Software-controlled coherence

: :
Thread
# Block

Multiple
Kernels

Registers
64k /thread block

Shared Memory Read-only data
16-48kB : Cache 48kB HE

GDDR (off-chip)
6GB :

GPU card

Host memory (off-device)

multiple TBs

17



MIND THE MEMORY HIERARCHY

Intel Sandy Bridge GK110 GP100 GA100

Reg. Reg. Reg. Reg.
N GEN5TB/ s ~4MB,40TB/s 14MB 32MB
L1 SM SM SM

SYVIGE 1TB/ s 1MB 1TB/s ~4MB 24MB

L2
2MB

LLC LLC LLC LLC
8MB, 500GB/s 1.5MB, 500GB/s 4MB 40MB

Main memory GPU memory GPU memory
IBs, 20GB/s 4GB, 150GB/s 16GB, 800GB/s

GPU memory
48GB, 1.9TB/s

18



OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads, operates in lock-step

SIMT: single instruction, multiple threads

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data
Illusion of scalar threads: hardware packs them into compound units

19



OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads, operates in lock-step

SIMT: single instruction, multiple threads

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data
Illusion of scalar threads: hardware packs them into compound units

IT’S AVECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

19



MAKING GPU USAGE EASY

GPU LIBRARIES



PROGRAMMING MODEL

CUDA program consists of CPU & GPU part 2
CPU part: part of the program with no or little parallelism
GPU part: high parallel part, SPMD-style . . .
-
a_
-
o
O

21



PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

PU

CPU part: part of the program with no or little parallelism

{ O
GPU part: high parallel part, SPMD-style
-
Concurrent execution . . . o
Non-blocking thread execution
-
o000 D-

Explicit synchronization

CPU

CPU

21



PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

PU

CPU part: part of the program with no or little parallelism

{ O
GPU part: high parallel part, SPMD-style
-
Concurrent execution . . . o

Non-blocking thread execution

Explicit synchronization

CPU

C Extension with three main abstractions

1.Hierarchy of threads
3.Barrier synchronization ©

CPU

21



PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism
GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions
1.Hierarchy of threads
2.Shared memory

3.Barrier synchronization

Exploiting parallelism
Fine-grain data-level parallelism (DLP)

Thread-level parallelism (TLP)

PU

¢  Z
RR K-
S

CPU

-
eo00 &

CPU
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PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

PU

CPU part: part of the program with no or little parallelism

{ O
GPU part: high parallel part, SPMD-style
-
Concurrent execution . . . o

Non-blocking thread execution

Explicit synchronization

CPU

C Extension with three main abstractions

1.Hierarchy of threads
3.Barrier synchronization ©

Exploiting parallelism
Fine-grain data-level parallelism (DLP) } Inner loops

CPU

| Threads
Thread-level parallelism (TLP)

Kernels

21



JUST-IN-TIME COMPILATION

Device code only supports C-subset of C++ (getting better)
Compile with nvcc

Compiler Driver

Calls other tools as required

cudacc, g++, clang, ...

Output
C code (host CPU Code)

Either PTX object code, or source code for run-time
interpretation

PTX (Parallel Thread Execution)
Virtual Machine and ISA
Execution resources and state

Linking
CUDA runtime library cudart
CUDA core library cuda

Virtual

CUDA program

-t

Physical l

PTX to target

22



SAXPY EXAMPLE

ylif = a - xli] + yli]
SAXPY: Scalar Alpha X Plus Y

Simple test to compare GPU and CPU performance

Objective: runtime reduction
Max. gridSize * threadsPerBlock elements

65535*1k -> ~ 64M elements
Memory requirement = 32M elements * 2 arrays * 4 Byte/element = 256 MB

Source code contains kernels for the GPU and the CPU

23



CUDA EXAMPLE

int main(void)

Kernel definition:

__global__
void saxpy(int n,

{

float a, float *xx, float xy)

int 1 = blockIdx.xkblockDim.x + threadIdx.x:
if (i < n) yli] = axx[i] + yl[il;

Host <-> Device interaction:
Kernel execution:
Host <-> Device interaction:

{

int N = 20 x (1 << 20);

float *X, *xy, *d_Xx, *d_y;

x = (floatk)malloc(Nxsizeof(float));
y = (floatx)malloc(Nxsizeof(float));

cudaMalloc(&d_x, Nxsizeof(float));
cudaMalloc(&d_y, Nxsizeof(float));

for (1
X [i]
y[il]
I

nt i =0; 1< N; i++) {
1.0f;
2.0f:

Il III—'

cudaMemcpy(d_x, x, Nxsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, Nxsizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<(N+511)/512, 512>>>(N, 2.0f, d_x, d_y);

cudaMemcpy(y, d_y, Nxsizeof(float), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();
// Free memory
cudaFree(d_X);
cudaFree(d_Y);

// Do some printing

24



LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model

cuda-python

Just plain CUDA C++ with some Python for device control

numba-cuda
CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled

Triton

Abstraction to Tensor operations, less flexible, but often better optimized

25



NUMBA-CUDA

Imports:

Kernel definition:

Host <-> Device interaction:

Kernel execution:

import numpy as np
from numba import cuda

# Kernel definition

@cuda.jit

def f(a, x, y):
# like threadIdx.x + (blockIdx.x * blockDim.x)
tid = cuda.grid(1)
size = len(y)

if tid < size:
y[tid] = axx[tid] + y[tid]

# Vector allocation and copy to Device
N = 100000

X = cuda.to_device(np.random.random(N))
y =

a

Lpha = 2.

# Kernel execution

# Enough threads per block for several warps per block

nthreads = 256

# Enough blocks to cover the entire vector depending on its length
nblocks = (len(a) // nthreads) + 1

f[nblocks, nthreads](a, X, V)

# Copying data back to host and print
print(y.copy_to_host())

26



HIGH-LEVEL

Tachi

Still able to write custom GPU kernels

No more detailed GPU thread control required

CuPy

No more kernel writing
Basically Numpy, but on a GPU

Adds a few functions for data transfer and device control

Deep Learning focused (include AutoGrad)

Jax
TensorFlow
PyTorch

27



Imports:

Host <-> Device interaction:

Execute operation:

CUPY

import cupy
import numpy as np

# Vector allocation and copy to Device
= 1000000
cupy.asarray(np.random.random(N) )
= cupy.asarray(np.random.random(N))
alpha = 2.0

N
X
y

# Execute saxpy op
y += alpha *x X

# Explicit copy back to host and print
# (implicit often also works)

print(cupy.asnumpy(y))

28



CuPy
e e e e e e R EEEE SEREEEEEEEEEEEEE R SEEEEEREE o
- : Linear algebra : :

Usgr : DNN e g e . Random Sort " GPU

defined Utility : __Sparse matrix | numbers : : data
CUDA : : cuSOLVER : . transfer

kernel
cuBLAS Thrust
v | cusias mm- o

CUDA

NVIDIA GPU

29



WRAPPING UP




SUMMARY

GPU Computing is using GPUs for non-graphical computations

More performance (compute, memory) . .
Better energy-efficiency (how I learned to love the picoJoule) I I
Key differences to a CPU aiale alaln

Much (many much’es) more parallelism

Latency is not minimized, but tolerated

Offload compute model ‘ ‘
No general-purpose programming (yet?)

Memory capacity is small Address-sliced XBARs
Single-thread performance is a nightmare ‘ ‘

Programming GPUs

Both low- and high-level abstractions are available

The best library strongly depends on the use-case _2 slice _2 slice

More reading

https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

31
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5> MIN BREAK

Then Exercises

NN from scratch in Numpy by Group 4 (Arjan, lona, Julian, Jonas)



THIS WEEKS EXERCISE

NN from scratch in Numpy by Group 4 (Arjan, lona, Julian, Jonas)



EXERCISE 2

General comments:

Two different gradient calculations were used for the sigmoid
See next slide
Both are valid
Some groups didn’t normalize the linear layer gradient to the batch size
LR suddenly depends on the batch size
Models effectively learn with a higher LR than set

34



EXERCISE 2

Direct gradient formulation:

class Sigmoid():
def init (self, in_features: int, batch_size: int):

super(Sigmoid, self). init_ ()
self.input = np.zeros(batch_size)

def forward(self, input):
self.input = 1nput
return 1./(1.+np.exp(—input))
def backward(self, grad_output):

return grad_input

grad_input = grad_output *x np.exp(-self.input) / np.power(l. + torch.exp(-self.input), 2)

class Sigmoid:
def init (self, in_features: int, batch_size: int):
super(Sigmoid, self). init_ ()

FOrmUlat]On W]th self.input = np.zeros(batch_size)

. - . . def forward(self, input):
the S]ng]d ]tself. self.input = 1nput
output =1 / (1 + np.exp(-input))
return output

def backward(self, grad_output):
sigmoid = self.forward(self.input)
grad_input = sigmoid x (1 - sigmoid) * grad_output
return grad_input

35



EXERCISE 2

Gradient normalization for the linear layer:

class Linear():
def init (self, in features: int, out features: int, batch size: int, 1r=0.1):

super(Linear, self). init ()
self.batch _size = batch _size
self.lr = 1lr
self.weight = np.random.normal(size=(in_features, out_features)) * np.sqrt(1l. / in_features)
self.bias = np.random.normal(size=(out_features,)) * np.sqrt(l. / in_features)
self.grad_weight = np.zeros((in_features, out_features))
self.grad _bias = np.zeros(out_features)
self.input = np.zeros((batch_size, in_features))

def forward(self, input):
self.input = 1nput
output = np.matmul(input, self.weight) + self.bias
return output

def backward(self, grad_output):
grad_input = np.matmul(grad_output, self.weight.T)
self.grad_weight = (1. /self.batch_size) x np.matmul(self.input.T, grad_output)
self.grad_bias = (1. /self.batch_size) x grad_output.sum(0)
return grad_input

def update(self):
self.weight = self.weight - self.lr % self.grad_weight
self.bias = self.bias - self.lr x self.grad_bias




NEXT WEEKS EXERCISE



NEXT WEEKS EXERCISE

Port numpy implementation to CuPy

Experiment with different network sizes

Compare CPU and GPU execution times

Submission deadline: Tuesday 09:00 am

https://csg.ziti.uni-heidelberg.de/
teaching/ap_nn_from_scratch_materials/
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