ANFÄNGERPRAKTIKUM NEURAL NETWORKS FROM SCRATCH

GPUS AND NEURAL NETWORKS

Hendrik Borras, Franz Kevin Stehle hendrik.borras@ziti.uni-heidelberg.de, kevin.stehle@ziti.uni-heidelberg.de HAWAII Group, Institute of Computer Engineering Heidelberg University

REMINDER: NEURAL NETWORKS ARE MASSIVE MATRIX MULTIPLY CONSTRUCTS

How do we execute this quickly and thus make it scalable?

GPU COMPUTING

GPU BACKGROUND

Primary use in gaming

Each console has a (powerful) GPU

Meantime photorealistic

Graphics: big, multidimensional floating-point operations in parallel

Programmable

Since ~2007 used for general-purpose computing CUDA

DIE SHOTS - CPU OR GPU?

DIE SHOTS - CPU OR GPU?

NVIDIA Kepler- GK110

Intel Xeon E7 - Westmere-EX

DIE SHOTS - CPU OR GPU?

NVIDIA Kepler- GK110

Intel Xeon E7 - Westmere-EX

PERFORMANCE SCALING

PERFORMANCE SCALING

POST DENNARD SCALING

PERFORMANCE SCALING

Partly by Bill Dally, Sudha Yalamanchili (UCAA Workshop, 2012)

POST-DENNARD: TRANSITION TO MASSIVELY PARALLEL MICROARCHITECTURES

$$P = afCV^2 + VI_{leakage} \propto f^3$$

Frequency reduction In-order pipelines

POST-DENNARD: TRANSITION TO MASSIVELY PARALLEL MICROARCHITECTURES

$$P = afCV^2 + VI_{leakage} \propto f^3$$

Frequency reduction In-order pipelines

Replication

Massively parallel Energy efficient

CUDA & GPU - OVERVIEW

NVIDIA CUDA

Compute kernel as C program

Explicit data- and thread-level parallelism

Computing, not graphics processing

Host communication

Memory hierarchy

Host memory

GPU (device) memory

GPU on-chip memory (later)

More HW details exposed

Use of pointers

Load/store architecture

Barrier synchronization of thread blocks

HARDWARE ARCHITECTURE

GPU ARCHITECTURE TOP-LEVEL VIEW

GPU ARCHITECTURE TOP-LEVEL VIEW

"NVIDIA-STYLE" SIMT CORE CLUSTER

Streaming Multi-Processor (SM)

Multi-threaded

Data parallel

Capabilities

64K registers

192 simple cores (Integer and SP FPU)

64 DP FPUs

32 LSUs, 32 SFUs

Scheduling

4 warp schedulers

2-way dispatch per warp

SOFTWARE VIEW

In 1990, Valiant already described GPU computing pretty well

In 1990, Valiant already described GPU computing pretty well

Superstep

Compute, communicate, synchronize

In 1990, Valiant already described GPU computing pretty well

Superstep

Compute, communicate, synchronize

Parallel slackness: # of virtual processors v, physical processors p

v = 1: not viable

v = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation and communication efficiently

In 1990, Valiant already described GPU computing pretty well

Superstep

Compute, communicate, synchronize

Parallel slackness: # of virtual processors v, physical processors p

v = 1: not viable

v = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation and communication efficiently

Extremely scalable, bad for unbalanced parallelism

THE BEAUTY OF SIMPLICITY

Thread-collective computation and memory accesses

Thread ID determines data element

GPU collaborative computing

One thread per output element Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element

THE BEAUTY OF SIMPLICITY

Thread-collective computation and memory accesses

Thread ID determines data element

GPU collaborative computing

One thread per output element Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element

-> If you do something on a GPU, do it collaboratively with all threads

SIMT EXECUTION MODEL

Programmer sees independent scalar threads

GPU HW bundles threads into warps

Illusion

Warps run in lockstep on vector-like hardware (SIMD)

How is divergent control flow handled?

SIMT EXECUTION MODEL

Programmer sees independent scalar threads

Illusion

GPU HW bundles threads into warps

Warps run in lockstep on vector-like hardware (SIMD)

How is divergent control flow handled?

PROGRAMMABILITY OF MASSIVE PARALLELIZATION

Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: N operations are independent

Expressive: complex memory accesses (irregular strides)

PROGRAMMABILITY OF MASSIVE PARALLELIZATION

Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: N operations are independent

Expressive: complex memory accesses (irregular strides)

Vector ISAs are bad

Orthogonal to multi-threading

Static in size, static in selection, mixed semantic model for vector/scalar instructions, C/C++ is scalar

ACCESSING MEMORY

Explicit memory hierarchy

Manual GPU memory fills & spilling

Manual shared memory fills

Explicit memory hierarchy simplifies coherence & consistency

No guarantees except for kernel completion boundaries

Software-controlled coherence

Host memory (off-device) multiple TBs

MIND THE MEMORY HIERARCHY

OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads, operates in lock-step

SIMT: single instruction, multiple threads

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads, operates in lock-step

SIMT: single instruction, multiple threads

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

IT'S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

MAKING GPU USAGE EASY

GPU LIBRARIES

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions

- 1. Hierarchy of threads
- 2. Shared memory
- 3.Barrier synchronization

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions

- 1. Hierarchy of threads
- 2. Shared memory
- 3. Barrier synchronization

Exploiting parallelism

Fine-grain data-level parallelism (DLP)

Thread-level parallelism (TLP)

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions

- 1. Hierarchy of threads
- 2. Shared memory
- 3. Barrier synchronization

Exploiting parallelism

Fine-grain data-level parallelism (DLP)

Thread-level parallelism (TLP)

Inner loops
Threads
Kernels

JUST-IN-TIME COMPILATION

Device code only supports C-subset of C++ (getting better)
Compile with nvcc

Compiler Driver

Calls other tools as required

cudacc, g++, clang, ...

Output

C code (host CPU Code)

Either PTX object code, or source code for run-time interpretation

PTX (Parallel Thread Execution)

Virtual Machine and ISA

Execution resources and state

Linking

CUDA runtime library cudart

CUDA core library cuda

SAXPY EXAMPLE

 $y[i] = \alpha \cdot x[i] + y[i]$

SAXPY: Scalar Alpha X Plus Y

Simple test to compare GPU and CPU performance

Objective: runtime reduction

Max. gridSize * threadsPerBlock elements

65535*1k -> ~ 64M elements

Memory requirement = 32M elements * 2 arrays * 4 Byte/element = 256MB

Source code contains kernels for the GPU and the CPU

CUDA EXAMPLE

Kernel definition:

```
__global__
void saxpy(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}</pre>
```

Host <-> Device interaction:

Kernel execution:

Host <-> Device interaction:

```
int main(void)
    int N = 20 * (1 << 20);
   float *x, *y, *d_x, *d_y;
    x = (float*)malloc(N*sizeof(float));
    y = (float*)malloc(N*sizeof(float));
    cudaMalloc(&d_x, N*sizeof(float));
    cudaMalloc(&d_y, N*sizeof(float));
    for (int i = 0; i < N; i++) {
    x[i] = 1.0f;
    y[i] = 2.0f;
    cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);
    // Perform SAXPY on 1M elements
    saxpy << (N+511)/512, 512 >>> (N, 2.0f, d_x, d_y);
    cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);
    cudaDeviceSynchronize();
    // Free memory
    cudaFree(d_X);
    cudaFree(d_Y);
    // Do some printing
```

LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model

cuda-python

Just plain CUDA C++ with some Python for device control

numba-cuda

CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled

Triton

Abstraction to Tensor operations, less flexible, but often better optimized

NUMBA-CUDA

Imports:

Kernel definition:

Host <-> Device interaction:

Kernel execution:

```
import numpy as np
from numba import cuda
# Kernel definition
@cuda.jit
def f(a, x, y):
   # like threadIdx.x + (blockIdx.x * blockDim.x)
   tid = cuda.grid(1)
    size = len(y)
    if tid < size:</pre>
        y[tid] = a*x[tid] + y[tid]
# Vector allocation and copy to Device
N = 100000
x = cuda.to_device(np.random.random(N))
y = cuda.to_device(np.random.random(N))
alpha = 2.
# Kernel execution
# Enough threads per block for several warps per block
nthreads = 256
# Enough blocks to cover the entire vector depending on its length
nblocks = (len(a) // nthreads) + 1
f[nblocks, nthreads](a, x, y)
# Copying data back to host and print
print(y.copy_to_host())
```

HIGH-LEVEL

Tachi

Still able to write custom GPU kernels

No more detailed GPU thread control required

CuPy

No more kernel writing

Basically Numpy, but on a GPU

Adds a few functions for data transfer and device control

Deep Learning focused (include AutoGrad)

Jax

TensorFlow

PyTorch

CUPY

```
import cupy
                       Imports:
                                   import numpy as np
                                   # Vector allocation and copy to Device
                                   N = 1000000
                                   x = cupy_asarray(np_random_random(N))
Host <-> Device interaction:
                                   y = cupy.asarray(np.random.random(N))
                                   alpha = 2.0
                                   # Execute saxpy op
          Execute operation:
                                   y += alpha * x
                                   # Explicit copy back to host and print
                                   # (implicit often also works)
                                   print(cupy.asnumpy(y))
```

CUPY

WRAPPING UP

SUMMARY

GPU Computing is using GPUs for non-graphical computations

More performance (compute, memory)

Better energy-efficiency (how I learned to love the picoJoule)

Key differences to a CPU

Much (many much'es) more parallelism

Latency is not minimized, but tolerated

Offload compute model

No general-purpose programming (yet?)

Memory capacity is small

Single-thread performance is a nightmare

Programming GPUs

Both low- and high-level abstractions are available

The best library strongly depends on the use-case

More reading

https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

5 MIN BREAK

Then Exercises

NN from scratch in Numpy by Group 4 (Arjan, Iona, Julian, Jonas)

THIS WEEKS EXERCISE

NN from scratch in Numpy by Group 4 (Arjan, Iona, Julian, Jonas)

EXERCISE 2

General comments:

Two different gradient calculations were used for the sigmoid

See next slide

Both are valid

Some groups didn't normalize the linear layer gradient to the batch size

LR suddenly depends on the batch size

Models effectively learn with a higher LR than set

EXERCISE 2

Direct gradient formulation:

```
class Sigmoid():
    def __init__(self, in_features: int, batch_size: int):
        super(Sigmoid, self).__init__()
        self.input = np.zeros(batch_size)

def forward(self, input):
        self.input = input
        return 1./(1.+np.exp(-input))

def backward(self, grad_output):
        grad_input = grad_output * np.exp(-self.input) / np.power(1. + torch.exp(-self.input), 2)
        return grad_input
```

Formulation with the sigmoid itself:

```
class Sigmoid:
    def __init__(self, in_features: int, batch_size: int):
        super(Sigmoid, self).__init__()
        self.input = np.zeros(batch_size)

def forward(self, input):
        self.input = input
        output = 1 / (1 + np.exp(-input))
        return output

def backward(self, grad_output):
        sigmoid = self.forward(self.input)
        grad_input = sigmoid * (1 - sigmoid) * grad_output
        return grad_input
```

EXERCISE 2

Gradient normalization for the linear layer:

```
class Linear():
    def __init__(self, in_features: int, out_features: int, batch_size: int, lr=0.1):
        super(Linear, self).__init__()
        self.batch_size = batch_size
        self.lr = lr
        self.weight = np.random.normal(size=(in_features, out_features)) * <math>np.sqrt(1. / in_features)
        self.bias = np.random.normal(size=(out_features,)) * np.sqrt(1. / in_features)
        self.grad_weight = np.zeros((in_features, out_features))
        self.grad_bias = np.zeros(out_features)
        self.input = np.zeros((batch size, in features))
    def forward(self, input):
        self.input = input
        output = np.matmul(input, self.weight) + self.bias
        return output
    def backward(self, grad_output):
        grad_input = np.matmul(grad_output, self.weight.T)
        self.grad_weight = (1. /self.batch_size) * np.matmul(self.input.T, grad_output)
        self.grad_bias = (1. /self.batch_size) * grad_output.sum(0)
        return grad_input
    def update(self):
        self.weight = self.weight - self.lr * self.grad_weight
        self.bias = self.bias - self.lr * self.grad_bias
```

NEXT WEEKS EXERCISE

NEXT WEEKS EXERCISE

Port numpy implementation to CuPy

Experiment with different network sizes

Compare CPU and GPU execution times

Submission deadline: Tuesday 09:00 am

https://csg.ziti.uni-heidelberg.de/
teaching/ap_nn_from_scratch_materials/