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EnMatch: Matchmaking

Kal Wang, Haoyu'

Abstract

gameDsifecycle. Previous methods focus on creating fair

Matchmaking is an essential part of e-sports and online
games. It pairs players into different combat teams and helps
maintain an enjoyable playing experience for all participants.
Previous research focuses on creating balanced games,
where closely skilled players are matched to create
competitive gameplay, assuming that balanced teams are the
most desired matchmaking outcome for players. They hereby

via Neural Combinatorial Cptimization

Iipeng Hu, Xlaochuan Feng, Minghao Zhao, Shiwel Zhao, Runze Wu,
Xudong Shen, Tanajie Lv, Changjie Fan
Fuxl Al Lab, NetFace Inc., Hangzhou, China
{wangkai02, liuhaoyun3 wurunze1}@corp.netease.com

Matchmaking Is a core task In e-sports and online games, as It c

levels and only select players from the same tler for each game. Though this strategy can ensure fair rr:aclchm'ari:ltw?. it iswg?‘:
always good for plnyei engagement. In this paper, we propose a novel Engagement-oriented Matchmaking -nMa' ) frame s
to ensure fair games and simultaneously enhance player engagement. Two main Issues need to be addressed. First, it is u;crm
how to measure lhe impact of different team compositions and confrontations on player_ engagement during the game cons;ln| r: su?t
the variety of player characteristics. Second, such a detalled consideration on every single player during matchmaking wi Roaors
in an NP-hard combinatorial optimization problem with non-linear objectives. In light of these challenges, we tumn 10 rezc-’;c')n
data analysis to reveal engagement-related factors. The resulting insights guice the development of engagement mrome r?\
enabling the estimation of quantified engagement before a match is completed. To handle thq cornpmatonal opvmnzatsoln npi‘ : bunli
we formulate the problem into a reinforcement learning framework, in which a neural cqmbtnagorlal opumuzam,f arob : lchizars
and solved. The performance of EnMatch is finally demonstrated through the comparison with other state-of-the-a

based on several real-world datasets and online deployments on two games.

®Select ~ @Enumerate 7R Meth ods
= g = @&l 1y ) The overall framework is presented in this figure and there are
''''''''''''' = — B = = five major components:

) & IPL. E 1. Matching Pool refers 1o the set of all players who have not
rg“a """" w R et been selected. In each step of matching, the matching pool
ﬁ‘-“' c = = A &P removes the selected 2K players. 2. Encoder ;mn;cu

i g for players in the matching pool, consideri

Selecting 2K players Falrest team-ups representations
Introduction

NOT SO GOOD POSTERS

for Better Fiayer Engagement

‘Lutes to player engagement and further influences the
games at =l times. They divide players into differant tiers based on skill

1
the potential interactions between players with diverse characteristics. 3. Masked
Decoder generates 2K players autoregressively based on the inputted player
representations from the encoder. The generated 2K players can be directly
divided into two teams, which are odd-index and even-index teams 4. Heuristic
Operator is a specially designed CO operator aimed at further enhancing the
matching results obtained through decoder output. 5. Engagement Model
provides engagement prediction for each selected player with the playersO

players from the same tier
to form opposing teams.
Players in the same tier

are supposed to have
similar gaming  skills.
Hence, through this

approach, all the players
in one combat have similar
gaming skills so that the

(&) Pruned Payer Graph
fairess of games could be well ensured. However, is game

faimess the only critical factor for player engagement? In
most matchmaking scenes, the answer Is no, which has been
demonstrated in EOMM. Using churn rate as an indicator of
player engagement, EOMM analyzes the impact of match
win-loss outcomes on player retention in 1-vs-1 scenes and
shows that fair games are not sufficient to ensure player
engagement. However, it still remains unexplored In scenes
that contain multiple players in one team, |.e., k-vs-k mode,

Player engagement-related behavior statistics for
different kinds of teams under win/loss situations.

; d - 1eq'|9_r¢es and team-u\leormalion as input. &
design an effective and —»0wmfow . ¢ Rt fapenind aamng o .
efficient strategy first E“TN“ }E&h l ’( ‘ . w Sonion

divide players into different [SSEERE | e | [ ol [ ‘J

tiers and then only select e x - o

Analysis and Results

The Impact of player states
on their engagement
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As a typical reinforcement learning loop, in EnMaich, the engagement model
(i.e., the environment) provides a prediction of user engagement (L.e., the reward
signal) and updates the matching pool (l.e., the state) which is subsequently
used to generate 2K players (Le., the action). The decoderUOs matchmaking
results and those obtained by the heuristic operator are jointly optimized to

encourage the decoder o out- put good results from the beginning and be more
heuristic operator friendly.
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Performance comparison for different

maichmaking methods in the two Oniine performance compas
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Abstract X

* Quantum error correction codes (QECC) are a key component for real-
izing the potential of quantum computing by allowing the protection of
quantum information from quantum noise.

» We propose to tackle the QECC challenges by adapting neural decoding
techniques in the classical ECC setting to the quantum domain.

» The proposed method achieves state-of-the-art accuracy, outperform-

ing, on topological codes, the existing neural and classical decoders,
which are often computationally prohibitive

Quantum Error Correction Coding

Syndrome
Mearurement Decading

' f '
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r
A quantum bit (qubit) is defined as the superposition of two states

[¥) =al0) +B|1), st a,BEC, |af*+|AP =1 (1)
Encoding
The initial logical set of qubits 1) is redundantly encoded to a larger set
of n physical qubits |/), via quantum entanglement.
Transmission
The encoded quantum state is perturbed by quantum noise (e.g., quan-
tum gates, decoherence) defined by the quantum error process £. There
is no arbitrary access to the current state (contrary to the classical set-
ting), so only the code syndrome s, defined by the code parity check
matrix, is measured.
Decoding
The goal of the parameterized decoder f; : R'" — R” is to provide a soft
approximation of the noise to be corrected, i.e., z = fy(s).

Motivation

Three major differences with classical error correction can be established

¢ Syndrome Decoding: There is no arbitrary access to the current
state (due to quantum wave measurement collapse) such that only par-
tial information defined by the syndrome is available. It requires an
adaptation of the existing neural decoders to syndrome decoding.

« Logical Decoding: We are interested in the logical qubits only, mean-
ing we wish to predict the codeword up to the logical operators mapping
L (ie., Lz instead of z). However, this mapping is defined over the
highly non-differentiable G'I'(2) (i.e., XOR).

* Noisy Syndrome measurement: The syndrome measurement itself

being noisy, the decoding must be performed based on multiple noisy
measurements of the syndrome,

These challenges are at the core of our contributions.

Deep Quantum Error Correction

Yoni Choukroun, Lior Wolf

Overcoming Measurement Collapse by Prediction
- T—

»We propose to extend the existing SOTA classical neural decoder [1],
by replacing the channel output with an initial estimate of the noise ¢,
to be further refined by the code-aware network.

fo([9.(s), 5)) (2)
o The estimator ¢..(5) is trained via the following objective
L, = BCE(g.(s).2), (3)

where BCE is the binary cross entropy loss and ¢ the system noise.

Logical Decoding

o The logical error rate (LER) metric provides valuable information on
the practical decoding performance.

o Thus, we wish to minimize the following LER objective
Lier = BCE(L fy(s), Le) (4)

where the multiplications are performed over the highly non-
differentiable (G F'(2).

» Defining the bipolar mapping ¢(u) = | -

2u,u € {0,1}, we obtain
o(u @)

du)p(v),Yu,v € {0,1}. Thus, with z € {0,1}", we have

(A(L,z)), =Li®z= ¢ ](ll,t,‘:((L),, 'il',))‘ (5)

o Thus, as a composition of differentiable functions A(L, x) is differen-
tiable and we can redefine our training objective as follows
Lier BCE(:\(I.. binl fo(s))), '.,-;’). (6)

where lin denotes vector binarization

N .
Noisy Syndrome Measurement

» At each time sample we have the measured syndrome defined as

s=(Hzded - De)) DE (7)

o We first analyze each measurement separately and then perform effi-
cient global decodmg at the embedding level by applying a symmetric

pooling function (average) in the middle of the neural network

o Given a neural decoder with NV layers and the activations ¢ € RIKNX

1.1 P at layer [

T &=

>

the pooled embedding is given by ¢ Yo [V/2].
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y Sg::rree:‘\sz i::::!fn‘cto.rs were proposed to reduce cache
Stk IC in early multiprocessors systems.
ol r,‘ e Proposed mechanisms were forsaken
the slow increase of core counts and the
emergence of scaling challenges. Recent ma
architectures that i Fores

behen ntegrate beyond a hund
have revitalized such proposuls.y [eicores

In this work, we review bygone proposals

re-lrp!:ﬂemenf them in modern muglﬂcore F;rc?\itecture':
Adc!mpncny, we formulate a general mechanism that
o;?n‘mlzes all the different data sharing patterns with
minimum impact in  the modern
microarchitecture.

|

Objective and Architecture multicore

The overall objective is given by

L = AperLper +

/

AcerLier + AL (8)

Coherence Predictors

where \gepery € R

denote the weights of each objective

e s B e u Adgpﬁve coherence predictors failed due fo its
o - r’“‘ st — limited capability to detect sharing patterns and the
inftlol Exbedding o o hardened cost of verifying such complex protocols
Il 4o Esaal m Encouraged by the branch prediction blooming,
. — predictors were applied to select between basic
- NHEA g, coherence protocols to reduce coherence traffic

CHRET Hom
lv.l,'..i A l

Some Results

m Coherence predictors were designed for bus-based
multiprocessors and evaluated with trace-based
simulators. Thus, their effectiveness is unknown

Coherence Predictor Coherence Protocol Selection

Methodology

e We use gem5-23 with CHI coherence prgtocol to
model a 32-core-mesh HPC system as baseline A
We use SPLASH-3, PARSEC and Graph Analytics
applications to evaluate the designs

As demonstrator, we implemented a minimalist.ic
predictor that selects between copy-on-read-miss
and migrate-on-read-miss

Speed-up of 1.06x on average (up to 1.27x in RAY)

Conclusions

o First adaptation of QECC challenges to neural decoders (Tmnsiovrners)
» Optimization over boolean algebra
«SOTA performance on a large variety of codes

{l] Error Correction Code Transformer, Yoni Choukroun and Lior Wolf,
Neurips 2022

f coherence

isi nd re-evaluation o
= Revision a Rt

predictor mechanisms  in
NoC-based multicores

= Design and implemenfuti?n of generic
scheme for coherence predictor
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Adaptive Coherence

» Cache coherence protocols keep cached data
coherent at the cost of message overhead

= Multiple prgfpcols exist based on different policies,
each optimizing a different data sharing pattern

] Adoptive_ coherence protocols apply a specific
transactions for each data sharing pattern

= Multiple protocols merged into an adaptive protocol

Basic Coherence Protocol

Adaptive Coherence Protocol

1. Re-evaluate state-of-the-art coherence predictors,
modeling them within a modern multicore with latest
cache coherence protocol standard
= Evaluation based on speed-up, NoC traffic

reduction, accuracy, power consumption and area
overhead

= We use state-of-the-art tools for this evaluation
such as: cycle-accurate simulators, real parallel
applications and RTL synthesis

2. Design a general prediction mechanism that
optimizes several data sharing patterns

= Graph-based analysis of coherence transactions
s Located in the Directory for minimal alteration

Results

Figure 1. Speed-up of demo Coherence Predictor with
respect to the baseline system with MOESI protocol
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Introduction

* Inanimage, near pixels represents the same object or pattern (e.g.,

white snow), which can lead to exact or approximate values.
| * Input vectors in convolutions formed by CIxHXW. o Non-relational databases may benefit from FPGAs e Scalable, async. graph accelerator on compressed graph
i Complete FPGA-powered databases exist for key-value
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2 2 gradient direction and generate high-quality textures, alon IO R ; (a) BFS (b) WCC
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