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ABOUT US
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From: database engineer, HW designer 
(ASICS, FPGA), HPC

To: vertically integrated approach to 
efficient ML => HW systems for AI

Neural Architectures

Compiler

Plethora of HW

perf [
ops
s

] = p[Watt] ⋅ e[
ops

J
] P = afCV 2 + V Ileakage

xl = Φ(W ⊕ xl−1 + bl)



MAIN RESEARCH DIRECTIONS
Robust ML 

Approximations: Bayesian, 
Probabilistic, Deep Ensembles, 
Repulsive Ensembles (LLMs) 

Understanding and using methods 

Assessment of costs 

Translating among methods 

Mapping to noisy HW 

Scalable ML 
GreenML - compression for training of 
large-scale models 

Khunjerab - connecting RRAM to LLMs 

AMD’s Fused GPU/CPU 

Model compression (NAS) 

Mapping to noisy memory

3

Register File

Functional 
Unit

Functional 
Unit

Functional 
Unit

Load/store 
queue

L1 
Cache

L2/3 
Cache DRAM

Reser-
vation 
station

Reser-
vation 
station

Reser-
vation 
station

Issue
Buffer

Reorder
Buffer

Decode

Instruction Fetch
Branch 

Predictor

Instruction
Cache

Fetch 
buffer

x10-9sec x10-8sec x10-7sec

add   r1,r2,r3
sub   r4,r1,r5
slt   r6,r8,r9
bne   r6,exit
muld  f0,f2,f4
...
…

Speculative 
fetch

Speculative 
execution

Correctness check 
on speculation

Speculative 
pre-fetch

perf [
ops
s

] = p[Watt] ⋅ e[
ops

J
]



ML APPLICATIONS
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MODERN ML
Image & video: 
classification, object 
localization & 
detection 

Speech and language: 
speech recognition, 
natural language 
processing 

Medical: imaging, 
genetics of diseases 

Various: game play, 
robotics
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Artificial Neural Networks (ANNs) deliver state-of-the-art accuracy for many AI tasks 

… at the cost of extremely high computational complexity

IMAGENET: 1000 classes

ImageNet Top-1 Error

2011

2012

2015

2016

2019

2024

0,0 % 12,5 % 25,0 % 37,5 % 50,0 %

Pre-DNN

AlexNet

FixResNeXt-101 32x48d 

ResNet-152


Training: ~ O(1018) OPs 
Inference: ~ O(109) OPs

Inception v4


OmniVec (Vision Transformer)



DATASET COMPARISON
Type Dataset 

Samples Dataset Size

MNIST Image 60k train 
+ 10k test ~ 45 MB

CIFAR-10 Image 50k train 
+ 10k test ~ 176 MB

ILSVRC2015 Image 1.38M ~ 150 GB

FineVideo Video 43k ~ 600 GB 
(3.4k hours)

The Pile Text 211M 
(documents) ~ 825 GB

LLAMA 
Pretraining Sets Text ~ 4.7 TB
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Trains on a reasonable 
laptop in ~ 10min

Trains in ~ 3 weeks on 
2k A100 GPUs consuming 

~ 449 MWh [1]

[1] Touvron, H., “LLaMA: Open and Efficient Foundation Language Models”, 2023, https://arxiv.org/abs/2302.13971 

https://arxiv.org/abs/2302.13971


HARDWARE LOTTERY HYPOTHESIS
“Tooling […] has played a disproportionately large role in  
deciding which ideas succeed and which fail” 

HW determines which ideas succeed 
ANNs == matrix-matrix ops == excellent performance of GPUs 

Most ML researchers ignore hardware 

Recent trends 
Convolutions and transformers (attention heads, based on softmax) 

GPT-3: 175B parameters (800GB of state); Alphafold-2: 23TB of training data 

What if another processor was existing, e.g. excelling in processing large graphs? 
Probabilistic graphical models, sum-product networks, graph neural networks, etc.?

7Sara Hooker. 2021. The hardware lottery. Commun. ACM 64, 12 (December 2021), 58–65. https://doi.org/10.1145/3467017

PROCESSOR SPECIALIZATION IS CONSIDERED HARMFUL FOR 
INNOVATION

https://doi.org/10.1145/3467017


ORGANIZATION



OBJECTIVES

Objectives: The students … 
… learn about the mathematical foundations of machine learning 

… start applying their skills by implementing a least squares fit 

… continue on to multi-layered models by implementing a multi-layer perceptron 
(MLP) from scratch 

… experience first-hand the requirement of using parallel architectures, in our 
case GPUs, when scaling up neural networks and learn how to bring their models 
to the GPU 

… apply their acquired knowledge on more complex architectures, datasets, 
problems or optimizers during the project 

… implement a more complex models/techniques based on their acquired 
knowledge as their final project
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METHODS & PREREQUISITES
Methodology 

• Strong focus on learning from hands-on experience 

• Learning to implement neural networks starting with pure Python without any auto-grad 
packages, with usage of the common numerical packages (numpy, CuPy, Scikit-learn) following 
after -> Allows for a look under the hood not easily possible using modern ML libraries 

• Students can choose from a large selection of final project topics based on their specific personal 
interests 

Prerequisites 
General knowledge of machine learning (either from lectures or from self-study) 

Passed exams in: 

• Einführung in die Praktische Informatik (IPI) OR Programmierkurs (IPK) 

• Lineare Algebra 1 (MA4) OR Mathematik für Informatik 1 (IMI1) 

Practical experience: 

• Intermediate proficiency in Python
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ORGANIZATION
Lectures – 2 hours/week 

Lecturers:  

Hendrik Borras (hendrik.borras@ziti.uni-heidelberg.de) 

Robin Janssen (robin.janssen@ziti.uni-heidelberg.de) 

Time: Wednesday, 13:00 st. 

Exercises – 2 hours/week 
Groups of 2 or 3 students 

Time: Wednesday, after the lecture 

Mixture of programming and experiment exercises 

Project-Based Grading 
Work to be done in groups – individual work must be visible 

Students implement, document, and present an ML program 

Grades are determined by the quality of the project, report, and presentation at poster session
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ORGANIZATION

Both “Anfängerpraktikum” and “Fortgeschrittenenpraktikum” are 
possible 

They will differ in the amount of work expected for the projects 

All other things, like lectures and final presentation are the same 

Who would like to do an AP? Who would like to do an FP? 
A minimum of two people per are required to make sure groups can be formed
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ASSIGNMENTS
Practical exercises: Coding and experiments 

Goal:  
General understanding of basic DNN building blocks 

Building a common code base for the projects 

Comments on LLM use: 
Generally no restrictions, however: 

Code is trivially solvable by Copilot or [insert random LLM] 

Learning is greatly diminished with LLM use 

Recommendation: Turning off Copilot or similar assistances during the exercises
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AGENDA
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Datum Vorlesung Übung

15.10 Einführung & Machine Learning 1 Polynomial curve fitting

22.10 Machine Learning 2 MLP from scratch

29.10 GPUs & CuPy Cluster access, GPU acceleration and experiment visualization

05.11 Project formalities and suggestions
Project proposal development

12.11  No lecture

19.11 Project proposal discussion and kick-off

… N-times Project updates and questions

KW 10 Poster session

KW 12 Reports due



ADDITIONAL MATERIAL
Papers 

Badillo et al.: An Introduction to Machine Learning (https://
ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796) 

Horowitz: Computing's energy problem (and what we can do about it) (https://
ieeexplore.ieee.org/document/6757323) 

Textbooks 
Goodfellow et al.: Deep Learning (https://www.deeplearningbook.org, https://
github.com/janishar/mit-deep-learning-book-pdf)  

Hwu et al.: Programming Massively Parallel Processors (https://www.sciencedirect.com/
book/9780323912310/programming-massively-parallel-processors) 

Other 
Deep Learning Cheat Sheet (https://stanford.edu/~shervine/teaching/cs-229/
cheatsheet-deep-learning)
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ADDITIONAL MATERIAL

https://hawaii.ziti.uni-
heidelberg.de/teaching/
ap_nn_from_scratch_materials_wi
se2025/ 
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LINEAR AND POLYNOMIAL REGRESSION

Learning, generalization, model selection, regularization, overfitting 

With material from Andrew Ng (CS229 lecture notes) and Christopher Bishop 
(Pattern Recognition and Machine Learning)



SUPERVISED LEARNING

Based on the given housing data, is it possible to 
learn to predict the costs of other houses? 

➡Prediction of “Unseen data” 

Notation 
• : Input features of sample  

• : Target variable (or output variable or label) of sample  

• : Training sample (or observation)  

• Training set: set of all training samples (size ) 

Supervised learning problem: find good prediction 
function  

•  (theta) are the parameters (weights) of the model 

• Classification (discrete) vs. regression (continuous) problem

x(i) i
t(i) i
(x(i), t(i)) i

N

y = hθ(x)
θ
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Training set

Learning algorithm

hθx y



LINEAR REGRESSION

 

Supervised learning: choose function   

 

Simplification given  model parameters:  

 (model intercept  by ) 

Learning: make  close to  for the  training samples we have 

Cost (or error or loss) function “how close is that”:  

Least-squares method to find the optimal parameters by minimizing this sum of squared residuals

x = (x1, x2)T = [x1
x2] ∈ ℝ2

h
y = hθ(x) = θ0 + θ1x1 + θ2x2

D

hθ(x) = h(x) =
D

∑
d=1

θdxd = θTx θ0 x0 = 1

h(x) t N

J(θ) =
1
2

N

∑
n=1

(hθ(x(n)) − t(n))2
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GRADIENT DESCENT
Choose  such that  is minimal 

Start with initial guess of , repeatedly perform gradient descent: 

, simultaneously for all  and learning rate  

 

Hint: remember chain rule of calculus - for ,  

=> Update rule:  

Magnitude of update is proportional to error term 

Which set of the training samples (elements ) to consider for one update?

θ J(θ)
θ

θd := θd − α
∂

∂θd
J(θ) d = 1,...,D α

∂
∂θd

J(θ) =
∂

∂θd

1
2

N

∑
n=1

(hθ(x) − t)2 =
2
2

N

∑
n=1

(hθ(x) − t) ⋅
∂

∂θd
((

D

∑
i=1

θixi) − t) =
N

∑
n=1

(hθ(x) − t)xd

f(x) = u(v(x)) f′￼(x) = u′￼(v(x))v′￼(x)

θd := θd + α∑
n

(t(n) − hθ(x(n)))x(n)
d

n
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BATCH GRADIENT DESCENT
Only one global optima as  is a convex 
quadratic function  

Batch gradient descent:  

 

Repeat until convergence  

Looks at every training sample ( ) 
on every step 

Number of steps depend on convergence 

Guaranteed to be optimal, but expensive

J

∀d ∈ D

θd := θd + α
N

∑
n=1

(t(n) − hθ(x(n)))x(n)
d

∀n ∈ N
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Cost function



STOCHASTIC (INCREMENTAL) GRADIENT DESCENT

Scanning the complete data set for every 
step can be costly 

Stochastic gradient descent is based on 
randomly selecting training samples to 
perform gradient descent 

for all n in N: 

 

Repeat until convergence  

Makes progress for each training sample

θd := θd + α(t(n) − hθ(x(n)))x(n)
d ; ∀d ∈ D

22

Cost function



POLYNOMIAL CURVE FITTING
Training set:  observations of  and 

 

Ground truth: , but (Gaussian) noise present 

Many data sets have an underlying regularity, but observations 
are corrupted by random noise 

Objective: make good predictions  of new values  
Generalize from a finite data set 

Model: polynomial function of order of  

 

Although  is a nonlinear function of , it is a linear 
function of the coefficients  => linear model

N x = (x1, . . . , xN)T

t = (t1, . . . , tN)T

t = sin(2πx)

̂y ̂x

M

h(x, w) = w0 + w1x + w2x2 + . . . + wMxM =
M

∑
m=0

wmxm

h(x, w) x
w
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FITTING
Determine the coefficients  by fitting to  
training samples 

Minimize error function  

Again: quadratic function of coefficients   

=> partial derivates (with respect to the coefficients) 
are linear in the elements of   

=> unique solution  

But what about order ? 
=> model selection

w N

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2

w

w
w*

M
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h(x, w) =
M

∑
m=0

wmxm



MODEL SELECTION
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GENERALIZATION AND OVERFITTING
Good generalization: making accurate 
predictions for new (unseen) data 

• Test set: here generated the same way as training 
set 

• Usual procedure: Split dataset into training, test 
(and sometimes validation) sets, with the test set 
remaining unknown to the model during training 
(Very important!) 

Identify overfitting 

• Training error:  for the training set 

• Test error:  for the test set 

• If datasets are of different size:

E(w*)
E(w*)

ERMS = 2E(w)/N
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MODEL SELECTION DEPENDS ON DATA SET SIZE

27N=10 N=100



REGULARIZATION 
Regularization can control overfitting by adding 
a penalty term to the error function 

 

where  

 governs the relative importance of the 
regularization term 

Such shrinkage methods reduce the value of the 
coefficients 

Quadratic regularizer: ridge regression or 
weight decay or L2 regularization 

Validation set to optimize either  or 

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2 +
λ
2

∥w∥

∥w∥ = wTw
λ

M λ
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WRAPPING UP



SUMMARY
This course: Teaches how Neural 
Networks actually work under the hood 

Linear regression example 
• Parameters and how they are learned 

• Generalization and model selection 

• Overfitting and regularization 

• Linear models are not universal 
approximators 

Artificial Neural Networks (ANNs) are 
universal approximators, but their gains 
are paid in higher computational 
complexity and lower interpretability
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EXERCISE

Online at the materials page 
Curve fitting on a simple dataset 

Code templates provided 

First with numpy as a reference 

Second with manually implemented SGD 

Investigation of: Over/under-fitting, 
dataset size 

To be submitted via e-mail by: 
Wednesday 9:00 

Discussion after the next lecture
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