
NEURAL NETWORKS FROM SCRATCH
LECTURE 01 - INTRODUCTION

Hendrik Borras, Robin Janssen
{hendrik.borras, robin.janssen}@ziti.uni-heidelberg.de,

HAWAII Lab, Institute of Computer Engineering
Heidelberg University

ABOUT US

2

From: database engineer, HW designer
(ASICS, FPGA), HPC

To: vertically integrated approach to
efficient ML => HW systems for AI

Neural Architectures

Compiler

Plethora of HW

perf [
ops
s

] = p[Watt] ⋅ e[
ops

J
] P = afCV 2 + V Ileakage

xl = Φ(W ⊕ xl−1 + bl)

MAIN RESEARCH DIRECTIONS
Robust ML

Approximations: Bayesian,
Probabilistic, Deep Ensembles,
Repulsive Ensembles (LLMs)

Understanding and using methods

Assessment of costs

Translating among methods

Mapping to noisy HW

Scalable ML
GreenML - compression for training of
large-scale models

Khunjerab - connecting RRAM to LLMs

AMD’s Fused GPU/CPU

Model compression (NAS)

Mapping to noisy memory

3

Register File

Functional
Unit

Functional
Unit

Functional
Unit

Load/store
queue

L1
Cache

L2/3
Cache DRAM

Reser-
vation
station

Reser-
vation
station

Reser-
vation
station

Issue
Buffer

Reorder
Buffer

Decode

Instruction Fetch
Branch

Predictor

Instruction
Cache

Fetch
buffer

x10-9sec x10-8sec x10-7sec

add r1,r2,r3
sub r4,r1,r5
slt r6,r8,r9
bne r6,exit
muld f0,f2,f4
...
…

Speculative
fetch

Speculative
execution

Correctness check
on speculation

Speculative
pre-fetch

perf [
ops
s

] = p[Watt] ⋅ e[
ops

J
]

ML APPLICATIONS

4

Language
Processing Robotics

Speech

Recognition
Image

Processing

MODERN ML
Image & video:
classification, object
localization &
detection

Speech and language:
speech recognition,
natural language
processing

Medical: imaging,
genetics of diseases

Various: game play,
robotics

5
Artificial Neural Networks (ANNs) deliver state-of-the-art accuracy for many AI tasks

… at the cost of extremely high computational complexity

IMAGENET: 1000 classes

ImageNet Top-1 Error

2011

2012

2015

2016

2019

2024

0,0 % 12,5 % 25,0 % 37,5 % 50,0 %

Pre-DNN

AlexNet

FixResNeXt-101 32x48d

ResNet-152

Training: ~ O(1018) OPs
Inference: ~ O(109) OPs

Inception v4

OmniVec (Vision Transformer)

DATASET COMPARISON
Type Dataset

Samples Dataset Size

MNIST Image 60k train
+ 10k test ~ 45 MB

CIFAR-10 Image 50k train
+ 10k test ~ 176 MB

ILSVRC2015 Image 1.38M ~ 150 GB

FineVideo Video 43k ~ 600 GB
(3.4k hours)

The Pile Text 211M
(documents) ~ 825 GB

LLAMA
Pretraining Sets Text ~ 4.7 TB

6

Trains on a reasonable
laptop in ~ 10min

Trains in ~ 3 weeks on
2k A100 GPUs consuming

~ 449 MWh [1]

[1] Touvron, H., “LLaMA: Open and Efficient Foundation Language Models”, 2023, https://arxiv.org/abs/2302.13971

https://arxiv.org/abs/2302.13971

HARDWARE LOTTERY HYPOTHESIS
“Tooling […] has played a disproportionately large role in
deciding which ideas succeed and which fail”

HW determines which ideas succeed
ANNs == matrix-matrix ops == excellent performance of GPUs

Most ML researchers ignore hardware

Recent trends
Convolutions and transformers (attention heads, based on softmax)

GPT-3: 175B parameters (800GB of state); Alphafold-2: 23TB of training data

What if another processor was existing, e.g. excelling in processing large graphs?
Probabilistic graphical models, sum-product networks, graph neural networks, etc.?

7Sara Hooker. 2021. The hardware lottery. Commun. ACM 64, 12 (December 2021), 58–65. https://doi.org/10.1145/3467017

PROCESSOR SPECIALIZATION IS CONSIDERED HARMFUL FOR
INNOVATION

https://doi.org/10.1145/3467017

ORGANIZATION

OBJECTIVES

Objectives: The students …
… learn about the mathematical foundations of machine learning

… start applying their skills by implementing a least squares fit

… continue on to multi-layered models by implementing a multi-layer perceptron
(MLP) from scratch

… experience first-hand the requirement of using parallel architectures, in our
case GPUs, when scaling up neural networks and learn how to bring their models
to the GPU

… apply their acquired knowledge on more complex architectures, datasets,
problems or optimizers during the project

… implement a more complex models/techniques based on their acquired
knowledge as their final project

9

METHODS & PREREQUISITES
Methodology

• Strong focus on learning from hands-on experience

• Learning to implement neural networks starting with pure Python without any auto-grad
packages, with usage of the common numerical packages (numpy, CuPy, Scikit-learn) following
after -> Allows for a look under the hood not easily possible using modern ML libraries

• Students can choose from a large selection of final project topics based on their specific personal
interests

Prerequisites
General knowledge of machine learning (either from lectures or from self-study)

Passed exams in:

• Einführung in die Praktische Informatik (IPI) OR Programmierkurs (IPK)

• Lineare Algebra 1 (MA4) OR Mathematik für Informatik 1 (IMI1)

Practical experience:

• Intermediate proficiency in Python

10

ORGANIZATION
Lectures – 2 hours/week

Lecturers:

Hendrik Borras (hendrik.borras@ziti.uni-heidelberg.de)

Robin Janssen (robin.janssen@ziti.uni-heidelberg.de)

Time: Wednesday, 13:00 st.

Exercises – 2 hours/week
Groups of 2 or 3 students

Time: Wednesday, after the lecture

Mixture of programming and experiment exercises

Project-Based Grading
Work to be done in groups – individual work must be visible

Students implement, document, and present an ML program

Grades are determined by the quality of the project, report, and presentation at poster session

11

mailto:hendrik.borras@ziti.uni-heidelberg.de
mailto:robin.janssen@ziti.uni-heidelberg.de

ORGANIZATION

Both “Anfängerpraktikum” and “Fortgeschrittenenpraktikum” are
possible

They will differ in the amount of work expected for the projects

All other things, like lectures and final presentation are the same

Who would like to do an AP? Who would like to do an FP?
A minimum of two people per are required to make sure groups can be formed

12

ASSIGNMENTS
Practical exercises: Coding and experiments

Goal:
General understanding of basic DNN building blocks

Building a common code base for the projects

Comments on LLM use:
Generally no restrictions, however:

Code is trivially solvable by Copilot or [insert random LLM]

Learning is greatly diminished with LLM use

Recommendation: Turning off Copilot or similar assistances during the exercises

13

AGENDA

14

Datum Vorlesung Übung

15.10 Einführung & Machine Learning 1 Polynomial curve fitting

22.10 Machine Learning 2 MLP from scratch

29.10 GPUs & CuPy Cluster access, GPU acceleration and experiment visualization

05.11 Project formalities and suggestions
Project proposal development

12.11 No lecture

19.11 Project proposal discussion and kick-off

… N-times Project updates and questions

KW 10 Poster session

KW 12 Reports due

ADDITIONAL MATERIAL
Papers

Badillo et al.: An Introduction to Machine Learning (https://
ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796)

Horowitz: Computing's energy problem (and what we can do about it) (https://
ieeexplore.ieee.org/document/6757323)

Textbooks
Goodfellow et al.: Deep Learning (https://www.deeplearningbook.org, https://
github.com/janishar/mit-deep-learning-book-pdf)

Hwu et al.: Programming Massively Parallel Processors (https://www.sciencedirect.com/
book/9780323912310/programming-massively-parallel-processors)

Other
Deep Learning Cheat Sheet (https://stanford.edu/~shervine/teaching/cs-229/
cheatsheet-deep-learning)

15

https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796
https://ascpt.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpt.1796
https://ieeexplore.ieee.org/document/6757323
https://ieeexplore.ieee.org/document/6757323
https://www.deeplearningbook.org
https://github.com/janishar/mit-deep-learning-book-pdf
https://github.com/janishar/mit-deep-learning-book-pdf
https://www.sciencedirect.com/book/9780323912310/programming-massively-parallel-processors
https://www.sciencedirect.com/book/9780323912310/programming-massively-parallel-processors
https://www.sciencedirect.com/book/9780323912310/programming-massively-parallel-processors
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

ADDITIONAL MATERIAL

https://hawaii.ziti.uni-
heidelberg.de/teaching/
ap_nn_from_scratch_materials_wi
se2025/

16

https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/

LINEAR AND POLYNOMIAL REGRESSION

Learning, generalization, model selection, regularization, overfitting

With material from Andrew Ng (CS229 lecture notes) and Christopher Bishop
(Pattern Recognition and Machine Learning)

SUPERVISED LEARNING

Based on the given housing data, is it possible to
learn to predict the costs of other houses?

➡Prediction of “Unseen data”

Notation
• : Input features of sample

• : Target variable (or output variable or label) of sample

• : Training sample (or observation)

• Training set: set of all training samples (size)

Supervised learning problem: find good prediction
function

• (theta) are the parameters (weights) of the model

• Classification (discrete) vs. regression (continuous) problem

x(i) i
t(i) i
(x(i), t(i)) i

N

y = hθ(x)
θ

18

Training set

Learning algorithm

hθx y

LINEAR REGRESSION

Supervised learning: choose function

Simplification given model parameters:

 (model intercept by)

Learning: make close to for the training samples we have

Cost (or error or loss) function “how close is that”:

Least-squares method to find the optimal parameters by minimizing this sum of squared residuals

x = (x1, x2)T = [x1
x2] ∈ ℝ2

h
y = hθ(x) = θ0 + θ1x1 + θ2x2

D

hθ(x) = h(x) =
D

∑
d=1

θdxd = θTx θ0 x0 = 1

h(x) t N

J(θ) =
1
2

N

∑
n=1

(hθ(x(n)) − t(n))2

19

GRADIENT DESCENT
Choose such that is minimal

Start with initial guess of , repeatedly perform gradient descent:

, simultaneously for all and learning rate

Hint: remember chain rule of calculus - for ,

=> Update rule:

Magnitude of update is proportional to error term

Which set of the training samples (elements) to consider for one update?

θ J(θ)
θ

θd := θd − α
∂

∂θd
J(θ) d = 1,...,D α

∂
∂θd

J(θ) =
∂

∂θd

1
2

N

∑
n=1

(hθ(x) − t)2 =
2
2

N

∑
n=1

(hθ(x) − t) ⋅
∂

∂θd
((

D

∑
i=1

θixi) − t) =
N

∑
n=1

(hθ(x) − t)xd

f(x) = u(v(x)) f′￼(x) = u′￼(v(x))v′￼(x)

θd := θd + α∑
n

(t(n) − hθ(x(n)))x(n)
d

n
20

BATCH GRADIENT DESCENT
Only one global optima as is a convex
quadratic function

Batch gradient descent:

Repeat until convergence

Looks at every training sample ()
on every step

Number of steps depend on convergence

Guaranteed to be optimal, but expensive

J

∀d ∈ D

θd := θd + α
N

∑
n=1

(t(n) − hθ(x(n)))x(n)
d

∀n ∈ N

21

Cost function

STOCHASTIC (INCREMENTAL) GRADIENT DESCENT

Scanning the complete data set for every
step can be costly

Stochastic gradient descent is based on
randomly selecting training samples to
perform gradient descent

for all n in N:

Repeat until convergence

Makes progress for each training sample

θd := θd + α(t(n) − hθ(x(n)))x(n)
d ; ∀d ∈ D

22

Cost function

POLYNOMIAL CURVE FITTING
Training set: observations of and

Ground truth: , but (Gaussian) noise present

Many data sets have an underlying regularity, but observations
are corrupted by random noise

Objective: make good predictions of new values
Generalize from a finite data set

Model: polynomial function of order of

Although is a nonlinear function of , it is a linear
function of the coefficients => linear model

N x = (x1, . . . , xN)T

t = (t1, . . . , tN)T

t = sin(2πx)

̂y ̂x

M

h(x, w) = w0 + w1x + w2x2 + . . . + wMxM =
M

∑
m=0

wmxm

h(x, w) x
w

23

FITTING
Determine the coefficients by fitting to
training samples

Minimize error function

Again: quadratic function of coefficients

=> partial derivates (with respect to the coefficients)
are linear in the elements of

=> unique solution

But what about order ?
=> model selection

w N

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2

w

w
w*

M

24

h(x, w) =
M

∑
m=0

wmxm

MODEL SELECTION

25

GENERALIZATION AND OVERFITTING
Good generalization: making accurate
predictions for new (unseen) data

• Test set: here generated the same way as training
set

• Usual procedure: Split dataset into training, test
(and sometimes validation) sets, with the test set
remaining unknown to the model during training
(Very important!)

Identify overfitting

• Training error: for the training set

• Test error: for the test set

• If datasets are of different size:

E(w*)
E(w*)

ERMS = 2E(w)/N

26

MODEL SELECTION DEPENDS ON DATA SET SIZE

27N=10 N=100

REGULARIZATION
Regularization can control overfitting by adding
a penalty term to the error function

where

 governs the relative importance of the
regularization term

Such shrinkage methods reduce the value of the
coefficients

Quadratic regularizer: ridge regression or
weight decay or L2 regularization

Validation set to optimize either or

E(w) =
1
2

N

∑
n=1

(h(xn, w) − tn)2 +
λ
2

∥w∥

∥w∥ = wTw
λ

M λ
28

WRAPPING UP

SUMMARY
This course: Teaches how Neural
Networks actually work under the hood

Linear regression example
• Parameters and how they are learned

• Generalization and model selection

• Overfitting and regularization

• Linear models are not universal
approximators

Artificial Neural Networks (ANNs) are
universal approximators, but their gains
are paid in higher computational
complexity and lower interpretability

30

Er
ro

r

Model “complexity”

<- Underfitting Overfitting ->

Best fit

Test e
rro

r

Training error

Data “complexity”

EXERCISE

Online at the materials page
Curve fitting on a simple dataset

Code templates provided

First with numpy as a reference

Second with manually implemented SGD

Investigation of: Over/under-fitting,
dataset size

To be submitted via e-mail by:
Wednesday 9:00

Discussion after the next lecture

31

https://hawaii.ziti.uni-heidelberg.de/teaching/
ap_nn_from_scratch_materials_wise2025/

https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/

