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REMINDER: NEURAL NETWORKS ARE MASSIVE 
MATRIX MULTIPLY CONSTRUCTS
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How do we execute this quickly and thus make it scalable?

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>
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·<latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit> =<latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit>
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f·<latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit>

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

)
<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

) =<latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit> f

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

)
x1 W2 y



GPU COMPUTING



GPU BACKGROUND
Primary use in gaming 

Each console has a 
(powerful) GPU 

Meantime photorealistic 

Graphics: big, multi-
dimensional floating-point 
operations in parallel 

Programmable 

Since ~2007 used for 
general-purpose computing 

CUDA

4https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/

NVIDIA

https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/


5

CFD Cosmology Molecular 
Dynamics

Weather/climate 
research Machine Learning

nvidia.comtop500.org

Tera-FLOP/s 
September 1997

Peta-FLOP/s 
November 2012

15 years 10 years

Exa-FLOP/s 
June 2022



DIE SHOTS - CPU OR GPU?

6Intel Xeon E7 - Westmere-EXNVIDIA Kepler- GK110

Command 
processorSetup pipeline Setup pipeline

“Core”

PCIe

Memory 
controller

 4
x 

Se
tu

p 
pi

pe
lin

e

QPI links

Scalable Memory Interface (SMI)

Caching agents, router, Mrs

Core LLC slice



Xeon E5-2699v4 
(Broadwell, 2016)

Tesla K20 (GK110)
(Kepler, 2012)

NVIDIA P100 (GP100)
(Pascal, 2016)

NVIDIA V100 (GV100) 
(Volta, 2017)

Core count 22 cores 
2 FP-ALUs/core

13 SMs 
64/SM(DP), 192/SM(SP)

56 SMs 
32/SM(DP), 64/SM(SP)

84 SMs 
32/SM(DP), 64/SM(SP)

Frequency 2.2-3.6GHz 0.7GHz 1.328-1.480GHz 1.455GHz
Effective 

vector width
256bit (SP/DP) 

AVX 2.0
1024bit (SP), 2048bit (DP) 

static grouping
1024bit (SP), 2048bit (DP) 

dynamic grouping
Peak Perf. 633.6 GF/s (DP) 1,165 GF/s (DP), SP x3 5.3 TF/s (DP), SP x2 7.5 TF/s (DP), SP x2
Use mode latency-oriented throughput-oriented
Latency 

treatment
minimization toleration

Programming 10s of threads 10,000s+ of threads
Memory 

bandwidth
76.8 GB/s 

128bit DDR4-2400
250 GB/s 

384-bit GDDR-5
720 GB/s 

4096-bit HBM2
Memory 
capacity

1.54TB 5 GB 16G 32G 
Die size 456 mm² 550mm2 610mm2 815mm2

Transistor 
count

7.2 billion 7.1 billion 15.3 billion 21.1 billion
Technology 14nm 28nm 16nm FinFET 12 nm FFN 

Power 145W 250W 300W 300W
Power 

efficiency
4.37 GF/Watt (DP) 
8.74 GF/Watt (SP) 

4.66 GF/Watt (DP) 
14 GF/Watt (SP)

17.66 GF/Watt (DP) 
35 GF/Watt (SP)

25 GF/Watt (DP) 
50 GF/Watt (SP)

~3-4 ~1.5



HARDWARE ARCHITECTURE
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MICROARCHITECTURE EXAMPLE DRIVEN BY MOORE  
(& DENNARD SCALING)

9

Register File

Functional 
Unit

Functional 
Unit

Functional 
Unit

Load/store 
queue

L1 
Cache

L2/3 
Cache DRAM

Reser-
vation 
station

Reser-
vation 
station

Reser-
vation 
station

Issue
Buffer

Reorder
Buffer

Decode

Instruction Fetch
Branch 

Predictor

Instruction
Cache

Fetch 
buffer

x10-9sec x10-8sec x10-7sec

add   r1,r2,r3
sub   r4,r1,r5
slt   r6,r8,r9
bne   r6,exit
muld  f0,f2,f4
...
…

Speculative 
fetch

Speculative 
execution

Correctness check 
on speculation

Speculative 
pre-fetch

Partly by Sudha Yalamanchili, Architectural Alternatives for Energy Efficient Performance Scaling, VLSI Conference, 2013

More transistors 
Frequency scaling 

Locality (spatial/temporal) 
Predictable control flow

Multiple, deep pipelines 
Latency minimization & hiding 

Speculation everywhere



POST-DENNARD: TRANSITION TO MASSIVELY 
PARALLEL MICROARCHITECTURES
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Instruction 
Fetch Decode Issue

Floating point

Integer

SIMD vector

Load/Store

Write-back

Queue

Instruction cache

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Register file

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Interconnect

Shared Memory / L1

Replication Massively parallel 
Energy efficient

Frequency reduction 
In-order pipelines

Instruction 
Fetch Decode Issue

Floating point

Integer

SIMD vector

Load/Store

Write-back

Queue

Instruction cache

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Register file

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Core Core Core DP DP Load  / 
Store SFUCore Core Core

Interconnect

Shared Memory / L1

<latexit sha1_base64="QppktG4H2zeuAhz7X+HVsBnvLqk=">AAACDHicbVDNSgMxGMz6W+tf1aOXYBEEoezWol6EQi8KHirYbaHdlmyabUOz2ZBkhbL0Abz4Kl48KOLVB/Dm25ht96CtA4Fh5vv4MuMLRpW27W9raXlldW09t5Hf3Nre2S3s7bsqiiUmDRyxSLZ8pAijnDQ01Yy0hCQo9Blp+qNa6jcfiFQ04vd6LIgXogGnAcVIG6lXKNbhFURBze2WT92bXsIIGqEBmcCOkJHQEQy6Z2bKLtlTwEXiZKQIMtR7ha9OP8JxSLjGDCnVdmyhvQRJTTEjk3wnVkQgnB5qG8pRSJSXTMNM4LFR+jCIpHlcw6n6eyNBoVLj0DeTIdJDNe+l4n9eO9bBpZdQLmJNOJ4dCmIGTci0GdinkmDNxoYgLKn5K8RDJBHWpr+8KcGZj7xI3HLJOS9V7irF6m1WRw4cgiNwAhxwAargGtRBA2DwCJ7BK3iznqwX6936mI0uWdnOAfgD6/MHWB+Z+w==</latexit>

P = afCV 2 + V Ileakage / f3



GPU ARCHITECTURE TOP-LEVEL VIEW
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SIMT Core Cluster

SIMT 
Core

SIMT 
Core

SIMT Core Cluster

SIMT 
Core

SIMT 
Core

SIMT Core Cluster

SIMT 
Core

SIMT 
Core

Interconnection Network

Memory 
Controller

GDDR Module

Memory 
Controller

Memory 
Controller

…

…

GDDR Module GDDR Module…

GPU

Off-chip memory

ti
m

e

ti
m

e

with 
increasing 
#clusters



MIND THE MEMORY HIERARCHY
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Main memory 
TBs, 20GB/s

GPU memory 
4GB, 150GB/s

GPU memory 
16GB, 800GB/s

GPU memory 
48GB, 1.9TB/s

LLC 
8MB, 500GB/s

L2 
2MB

L1 
512kB

Reg. 
1kB 5TB/s

1TB/s

LLC 
1.5MB, 500GB/s

SM 
1MB

Reg. 
~4MB,40TB/s

1TB/s

LLC 
4MB

SM 
~4MB

Reg. 
14MB

GK110Intel Sandy Bridge GP100

LLC 
40MB

SM 
24MB

Reg. 
32MB

GA100



SOFTWARE VIEW

13



BULK-SYNCHRONOUS PARALLEL
In 1990, Valiant already described GPU computing 
pretty well 

Superstep 
Compute, communicate, synchronize 

Parallel slackness: # of virtual processors v, physical 
processors p 

v = 1: not viable 

v = p: unpromising wrt optimality 

v >> p: leverage slack to schedule and pipeline computation 
and communication efficiently 

Extremely scalable, bad for unbalanced parallelism

14

Leslie G. Valiant, A bridging model for 
parallel computation, Communications of 

the ACM, Volume 33 Issue 8, Aug. 1990



THE BEAUTY OF SIMPLICITY

Thread-collective computation 
and memory accesses 

Thread ID determines data element 

GPU collaborative computing 
One thread per output element 

Schedulers exploit parallel slackness 

GPU collaborative memory access 
One thread per data element

15
Co

m
pu

te
M

em
or

y

…

…

Output data set

M
C GDDR

GDDR

GDDR

-> If you do something on a GPU, do it collaboratively with all threads



PROGRAMMABILITY OF MASSIVE PARALLELIZATION

Vector ISAs are great 
Compact: one instruction for multiple data elements 

Parallel:  operations are independent 

Expressive: complex memory accesses (irregular strides) 

Vector ISAs are bad 
Orthogonal to multi-threading  

Static in size, static in selection, mixed semantic model for 
vector/scalar instructions, C/C++ is scalar

N

16
Multi-threading

Ve
ct

or
iz

at
io

n

Instruction stream

D
at

a 
po

ol

PU

PU

PU

PU

1

1

1

1

1

4x SIMD example



SIMT EXECUTION MODEL 

foo[] = {4,8,12,16}; 

A: v = foo[tid.x]; 

B: if (v < 10)  

C:    v = 0; 

   else 
D:    v = 10; 

E: w = bar[tid.x] + v;

A

B

C

D

E

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2

T3 T4

T1 T2 T3 T4

Programmer sees 
independent scalar threads 

Illusion 

GPU HW bundles threads 
into warps  

Warps run in lockstep on 
vector-like hardware (SIMD) 

How is divergent control 
flow handled?



ACCESSING MEMORY

Explicit memory hierarchy 
Manual GPU memory fills & 
spilling 

Manual shared memory fills 

Explicit memory hierarchy 
simplifies coherence & 
consistency 

No guarantees except for 
kernel completion boundaries 

Software-controlled coherence

18

Thread

Thread 
Block

Multiple 
Kernels

Registers 
64k/thread block

Shared Memory 
16-48kB

L1 Cache 
16-48kB

Read-only data 
Cache 48kB

L2 Cache 
1.5MB

GDDR (off-chip) 
6GB

Host memory (off-device) 
multiple TBs

GPU

GPU card



OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture 

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step 

SIMT: single instruction, multiple threads 

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL 

Hardware view: a programmable multi-core vector architecture 
SIMD: single instruction, multiple data 

Illusion of scalar threads: hardware packs them into compound units 

IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

19



MAKING GPU USAGE EASY 

GPU LIBRARIES



} Inner loops 
Threads 
Kernels

PROGRAMMING MODEL
CUDA program consists of CPU & GPU part 

CPU part: part of the program with no or little parallelism 

GPU part: high parallel part, SPMD-style 

Concurrent execution 
Non-blocking thread execution 

Explicit synchronization  

C Extension with three main abstractions 
1.Hierarchy of threads 

2.Shared memory 

3.Barrier synchronization 

Exploiting parallelism 
Fine-grain data-level parallelism (DLP) 

Thread-level parallelism (TLP)

21
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Physical

Virtual

JUST-IN-TIME COMPILATION
Device code only supports C-subset of C++ (getting better) 

Compile with nvcc 
Compiler Driver 

Calls other tools as required 

cudacc, g++, clang, … 

Output 
C code (host CPU Code) 

Either PTX object code, or source code for run-time 
interpretation 

PTX (Parallel Thread Execution) 
Virtual Machine and ISA 

Execution resources and state 

Linking 
CUDA runtime library cudart 

CUDA core library cuda

22

CUDA program

PTX x86

nvcc

PTX to target

GF100 GK110 GP100



 SAXPY EXAMPLE

SAXPY: Scalar Alpha X Plus Y  

Simple test to demonstrate GPU programming 
Will start with lowest programming paradigm: CUDA  

End at highest level abstraction: CuPy 

Source code contains kernels for the GPU and the CPU

23

y[i] = α ⋅ x[i] + y[i]



CUDA EXAMPLE
Kernel definition: 

Host <-> Device interaction: 

Kernel execution: 

Host <-> Device interaction:

24

int main(void) 
{ 
    int N = 20 * (1 << 20); 
    float *x, *y, *d_x, *d_y; 
    x = (float*)malloc(N*sizeof(float)); 
    y = (float*)malloc(N*sizeof(float)); 

    cudaMalloc(&d_x, N*sizeof(float));  
    cudaMalloc(&d_y, N*sizeof(float)); 

    for (int i = 0; i < N; i++) { 
    x[i] = 1.0f; 
    y[i] = 2.0f; 
    } 

    cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice); 

    // Perform SAXPY on 1M elements 
    saxpy<<<(N+511)/512, 512>>>(N, 2.0f, d_x, d_y); 

    cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost); 

    cudaDeviceSynchronize(); 

    // Free memory 
    cudaFree(d_X); 
    cudaFree(d_Y); 

    // Do some printing 
} 

__global__ 
void saxpy(int n, float a, float *x, float *y) 
{ 
    int i = blockIdx.x*blockDim.x + threadIdx.x; 
    if (i < n) y[i] = a*x[i] + y[i]; 
} 



LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model 

cuda-python 
Just plain CUDA C++ with some Python for device control 

numba-cuda 
CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled 

Triton 
Abstraction to Tensor operations, less flexible, but often better optimized

25



NUMBA-CUDA
Imports: 

Kernel definition: 

Host <-> Device interaction: 

Kernel execution:

26

import numpy as np 
from numba import cuda 

# Kernel definition 
@cuda.jit 
def f(a, x, y): 
    # like threadIdx.x + (blockIdx.x * blockDim.x) 
    tid = cuda.grid(1) 
    size = len(y) 

    if tid < size: 
        y[tid] = a*x[tid] + y[tid] 

# Vector allocation and copy to Device 
N = 100000 
x = cuda.to_device(np.random.random(N)) 
y = cuda.to_device(np.random.random(N)) 
alpha = 2. 

# Kernel execution 
# Enough threads per block for several warps per block 
nthreads = 256 
# Enough blocks to cover the entire vector depending on its length 
nblocks = (len(a) // nthreads) + 1 
f[nblocks, nthreads](a, x, y) 

# Copying data back to host and print 
print(y.copy_to_host())



HIGH-LEVEL
Taichi 

JIT compiled Python code as kernels 

No more detailed GPU thread control required 

CuPy 
No more kernel writing 

Basically Numpy, but on a GPU 

Adds a few functions for data transfer and device control 

Deep Learning focused (include AutoGrad) 
Jax 

TensorFlow 

PyTorch

27



CUPY

28

Imports: 

Host <-> Device interaction: 

Execute operation:

import cupy 
import numpy as np 

# Vector allocation and copy to Device 
N = 1000000  
x = cupy.asarray(np.random.random(N)) 
y = cupy.asarray(np.random.random(N)) 
alpha = 2.0 

# Execute saxpy op 
y += alpha * x 

# Explicit copy back to host and print 
# (implicit often also works) 
print(cupy.asnumpy(y))



CUPY: SOFTWARE ARCHITECTURE
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WRAPPING UP



NEURAL NETWORKS AND GPUS

Matrix multiplication  is at the heart of 
neural networks 

 elements - independent but very similar 
computations 

Compute scales with , memory with  

GPUs are 
massively parallel vector-based processors 

excellent in compute, limited in memory capacity 

Bonus: highly energy efficient => many operations per 
Watt

Y = W ⋅ X

N2

𝒪(N3) 𝒪(N2)

31

structured 
parallelism

computationally 
intensive

NVIDIA



SUMMARY

Key differences to a CPU 
Much (many much’es) more parallelism 

Latency is not minimized, but tolerated 

Offload compute model 

No general-purpose programming (yet?) 

Memory capacity is small 

Single-thread performance is a nightmare 

Programming GPUs 
Both low- and high-level abstractions are available 

The best library highly depends on the use-case

32

SMSMSM

Address-sliced XBARs

L2 slice

SMSMSM

L2 slice



DISCUSSION 
EXERCISE 02

Groups presenting today: 
Code: Group 6 (Daniela & Finn) 

Plots/Observations: Group 5 (Vincent & Julius)



GENERAL REMARKS

LR observation across groups 
Low LRs are slow, higher LRs fast & just as good 

But: Our current task (MNIST) is pretty simple, be careful to generalise this 

Two equivalent ways to compute sigmoid derivative: 

 

Gradient normalisation 
Gradient must be normalised to batch size, otherwise LR depends on batch size 

Please use robin.janssen@ziti.uni-heidelberg.de (not @stud…) 🤷

σ(x) =
1

(1 + e−x)
→ σ′￼(x) =

e−x

(1 + e−x)2
= σ(x)(1 − σ(x))

34

mailto:robin.janssen@ziti.uni-heidelberg.de


THIRD (AND FINAL) EXERCISE
Weights and Biases logging (wandb.ai) 

Port NumPy implementation to CuPy 
Code template: ex2 solution 

GPU access: HAWAII cluster (how_to_cluster.pdf) 

Account credentials via email 

Experiment with different network sizes 

Compare CPU and GPU execution times 

To be submitted via e-mail by: 
Wednesday 9:00 

Discussion after project examples 
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https://hawaii.ziti.uni-heidelberg.de/teaching/
ap_nn_from_scratch_materials_wise2025/ 

https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/

