NEURAL NETWORKS FROM SCRATCH
LECTURE 03 - GPU PROGRAMMING

Hendrik Borras, Robin Janssen
fthendrik.borras, robin.janssen}@ziti.uni-heidelberg.de,
HAWAII Lab, Institute of Computer Engineering
Heidelberg University

REMINDER: NEURAL NETWORKS ARE MASSIVE
MATRIX MULTIPLY CONSTRUCTS

WEIGHTED EDGES

PER NEURON, ﬁSURON
X() Wl Xl W2 y
G —— el ¢
INPUT HIDDEN OUTPUT INPUT HIDDEN OUTPUT
LAYER LAYER LAYER LAYER LAYER LAYER

How do we execute this quickly and thus make it scalable?

GPU COMPUTING

GPU BACKGROUND

Primary use in gaming

Each console has a
(powerful) GPU

Meantime photorealistic

Graphics: big, multi- »
dimensional floating-point NVIDIA
operations in parallel

Programmable
Since ~2007 used for
general-purpose computing
CUDA

https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/ 4

https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/

Machine Learning

Q
)
©
E c
T o
= 8
L wn
c O
)
©
2

www.fz-juelich.de

Molecular
Cosmology Dynamics

CFD

Exa-FLOP/s
June 2022

Peta-FLOP/s
November 2012

Tera-FLOP/s
September 1997

i

B

q

2}

nvidia.com

DIE SHOTS - CPU OR GPU?

o ISl

TR S

-

T
ug L J

T IY‘ ; W
T mE 'l ik
i ey e W
¥ mu ‘l!l TR

-L“’”

; ol : L Mlls
"lri o SR T T | ool

i T q 1 ; | ij_f ; : e o : . o :
~ LT YT f o . WLl T it i Wl <
»-ﬁ%* vep ‘E‘. '4'1[s ””’”"""" ! iy - [E A4 TR Liadbd il) T ' "3."3!. Mi""!m«g
ey e hd .
l .

s e .a:i ..: lm mi ﬂ u E-— : T ~ . B il ¢ | ' l xf <
¢ i g , 5 q . O . ' "4 ,.. " '
b ot il _ x 4 _ . :
X ¥ 1 'I : : ¥ f - - «? ' ' h‘
: 1 Rl § - - - | - . 4 . .. ‘, . I
: § . (e . v -) q - . } : € . |

nn v

;rw iwnng:‘ 2

Ca_‘é‘hj;nfg agents; r%u’ter.,‘3

o) i ".Sa\‘, vz ke
k _,‘a%‘ &5&5’: i: _L.l_ ‘L.t‘f‘ "3”__3_;.‘"
= -» ' I"'_"‘"’ "ﬁ:.i".‘
e S T
|Core =

" TLLClslice

Scalable’'Memory Interface (SMi)

-———"’

“NVIDIA Kepler- GK11 0

d

Xeon E5-2699v4 Tesla K20 (GK110) NVIDIA P100 (GP100) NVIDIA V100 (GV100)

(Broadwell, 2016) (Kepler, 2012) (Pascal, 2016) (Volta, 2017)

3-4

1>

~S

Core count 22 cores 13 SMs 56 SMs 84 SMs
2 FP-ALUs/core G4/SM(DEP), 192/5MSE) 32/SM(DP), 64/SM(SP) 32/SM(DP), 64/SM(SP)
Frequency 2.2-3.6GHz 0.7GHz 1.328-1.480GHz 1.455GHz
Effective 256Dbit (SP/DP) 1024Dbit (SP), 2048bit (DP) 1024Dbit (SP), 2048bit (DP)
vector width AVX 2.0 static grouping dynamic grouping
Peak Perf. 633.6 GF/s (DP) 1,165 GF/s (DP), SP x3 5.3 TF/s (DP), SP x2 7.5 TF/s (DP), SP x2
Use mode latency-oriented throughput-oriented
Latency minimization toleration
dielelelpinlhlef 10s of threads 10,000s+ of threads
Memory 76.8 GB/s 250 GB/s 720 GB/s
e\l B 128bit DDR4-2400 384-bit GDDR-5 4096-bit HBM?2
Memory 1.54TB 5 GB 16G 320G
Die siie 456 mm? 550mm? 610mm? 815mm?
Transistor 7.2 billion 7.1 billion 15.3 billion 21.1 billion
Technology 14nm 28Nnm 16nm FIinFET 12 nm FFEN
Power 145W 250W 300W 300W
Power 4.37 GF/Watt (DP) 4.66 GF/Watt (DP) 17.66 GF/Watt (DP 25 GF/Watt (DP)
ShilbEhmAa 8.74 GF/Watt (SP) 14 GF/Watt (SP) 35 GF/Watt (SP) 50 GF/Watt (SP)

HARDWARE ARCHITECTURE

MICROARCHITECTURE EXAMPLE DRIVEN BY MOORE
(& DENNARD SCALING)

-9 8 7
x10 “sec x10 “sec x10 "sec
< > gn >
Speculative | : |
fetch : Register File | :
| | |
| | |
l . | S lat
Speculative | | P ec‘;i ,i";e
Instruction Fetch execution | 5‘:33:] 1 Functipnal | pre-fetc
Branch station Unit |
Predictor | | :
Fete Reser- F - | : :
| . i #| Decode ISSHR vation UncHgiEe ! |
nstruction _gy Buffer Statict Unit |
Cache |1 L2/3 | e
Cache B Cache || o

Reser- :
vatioali FunLcJ:gi?nal

add rl,r2,r3 station

sub rd,rl,r5
slt ro,r8,r9
bne r6,exit
muld £0,f2, f4

Reorder |
Buffer
|

Correctness check |
. [
on speculation

| oad/store
queue

More transistors

: Multiple, deep pipelines
s s el * Latency minimization & hiding

Locality (spatial/temporal)
Predictable control flow
Partly by Sudha Yalamanchili, Architectural Alternatives for Energy Efficient Performance Scaling, VLSI Conference, 2013

Speculation everywhere

POST-DENNARD: TRANSITION TO MASSIVELY
PARALLEL MICROARCHITECTURES

Instruction cache

P CV2 V I 3 Warp scheduler | Warp scheduler | Warp scheduler | Warp scheduler
- CIJf ‘ leakaqe CX f Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch | Dispatch

Interconnect

Shared Memory / L1

Register file
T [0 = |

l- ——— l . . LSO{aOdre/ -
I .
! Integer Write-back |
I I Load /
: - | . | Core j Core g Core Core | Core g Core Store

I
I
I : Load /
: Floating point : Core Core Core Core Core Core g’s)re
' Instruction !
| |
I
| |
I
! SIMD vector !
| I Core Core Core Core Core Core Load /
I | Store
| |
| |
[| Load /
i :
| |
| |
| |
I
: I

Frequency reduction Massively parallel

Replication

In-order pipelines Energy efficient

GPU ARCHITECTURE TOP-LEVEL VIEW

SIMT Core Cluster

SIMT SIMT
Core Core

SIMT Core Cluster @§SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT
Core

SIMT
Core

Interconnection Network

Memory
Controller

Memory
Controller

GPU

Memory
Controller

GDDR Module

GDDR Module g GDDR Module

Off-chip memory

ime

t

|

ime

IWW
s | s

with
increasing
#clusters

o e s s

t

11

MIND THE MEMORY HIERARCHY

Intel Sandy Bridge GK110 GP100 GA100

Reg. Reg. Reg. Reg.
N GEN5TB/ s ~4MB,40TB/s 14MB 32MB
L1 SM SM SM

YVIGER 1TB/ s 1MB 1TB/s ~4MB 24MB

L2
2MB
LLC LLC
4MB 40MB

LLC LLC
8MB, 500GB/s 1.5MB, 500GB/s

Main memory GPU memory
IBs, 20GB/s 4GB, 150GB/s

GPU memory GPU memory
16GB, 800GB/s 48GB, 1.91TB/s

12

SOFTWARE VIEW

13

Ao
The success of the von Neumann model of
ial putation is attributable to the
fact that it is an cfficicnt bridge between and hard: high-level 1
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
i the bulk-sy parallel (BSP) model as a candidate for this role, and
ults quantifying its efficiency both in impl ing high-level 1.
nd algorithms, as well as in being i

Compute, communicate, synchronize

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

Parallel slackness: # of virtual processors v, physical . ach vorume 35 isue 8, Ave. 1990
Drocessors p

v = 1: not viable

vV = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation
and communication efficiently

Extremely scalable, bad for unbalanced parallelism

Communication
nnaiinansing 1

THE BEAUTY OF SIMPLICITY

Thread-collective computation Output data set

and memory accesses

Thread ID determines data element

A

GPU collaborative computing

One thread per output element

Memory Compute

Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element

-> |f you do something on a GPU, do it collaboratively with all threads

15

PROGRAMMABILITY OF MASSIVE PARALLELIZATION

4x SIMD example

Instruction stream

Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: /V operations are independent

Data pool

Expressive: complex memory accesses (irregular strides)

Vector ISAs are bad
Orthogonal to multi-threading

Static in size, static in selection, mixed semantic model for
vector/scalar instructions, C/C++ is scalar

Vectorization

Multi-threading ”

SIMT EXECUTION MODEL

: w = bar[tid.x] + v;

Programmer sees
independent scalar threads

[llusion

GPU HW bundles threads

= into warps

Warps run in lockstep on
vector-like hardware (SIMD)

How is divergent control
flow handled?

ACCESSING MEMORY

' ' Registers
64k/thread block

Explicit memory hierarchy

Ma-ngal GPU memory fills & d Thread Shared Memory L1 Cache j Read-only data
spilling M Block 16-48KB 16-48k8 | Cache 48kB |HF

Manual shared memory fills

simplifies coherence & x ' ¥

. o Multiple
consistency B Kernels

5 GDDR (off-chip) :
No guarantees except for : 6GB :

kernel completion boundaries . GPU card

Software-controlled coherence
Host memory (off-device)

multiple TBs

18

OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step
SIMT: single instruction, multiple threads

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

lllusion of scalar threads: hardware packs them into compound units

IT’S AVECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

19

MAKING GPU USAGE EASY

GPU LIBRARIES

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

PU

CPU part: part of the program with no or little parallelism

{ O
GPU part: high parallel part, SPMD-style
-
Concurrent execution . . . o

Non-blocking thread execution

Explicit synchronization

CPU

C Extension with three main abstractions

1.Hierarchy of threads
3.Barrier synchronization ©

Exploiting parallelism
Fine-grain data-level parallelism (DLP) } Inner loops

CPU

| Threads
Thread-level parallelism (TLP)

GEHES

21

JUST-IN-TIME COMPILATION

Device code only supports C-subset of C++ (getting better)
Compile with nvcc

Compiler Driver

Calls other tools as required

cudacc, g++, clang, ...

Output
C code (host CPU Code)

Either PTX object code, or source code for run-time
interpretation

PTX (Parallel Thread Execution)
Virtual Machine and ISA
Execution resources and state

Linking
CUDA runtime library cudart
CUDA core library cuda

Virtual

CUDA program

-

Physical l

PTX to target

22

SAXPY EXAMPLE

vl = a - xli] + yli]

SAXPY: Scalar Alpha X Plus Y

Simple test to demonstrate GPU programming

Will start with lowest programming paradigm: CUDA
End at highest level abstraction: CuPy

Source code contains kernels for the GPU and the CPU

23

CUDA EXAMPLE

int main(void)

Kernel definition:

__global__
void saxpy(int n,

{

float a, float *xx, float xy)

int 1 = blockIdx.xkblockDim.x + threadIdx.x:
if (i < n) yli] = axx[i] + yl[il;

Host <-> Device interaction:
Kernel execution:
Host <-> Device interaction:

{

int N = 20 x (1 << 20);

float *X, *xy, *d_Xx, *d_y;

x = (floatk)malloc(Nxsizeof(float));
y = (floatx)malloc(Nxsizeof(float));

cudaMalloc(&d_x, Nxsizeof(float));
cudaMalloc(&d_y, Nxsizeof(float));

for (1
X [i]
y[il]
I

nt i =0; 1< N; i++) {
1.0f;
2.0f:

Il III—'

cudaMemcpy(d_x, x, Nxsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, Nxsizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<(N+511)/512, 512>>>(N, 2.0f, d_x, d_y);

cudaMemcpy(y, d_y, Nxsizeof(float), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();
// Free memory
cudaFree(d_X);
cudaFree(d_Y);

// Do some printing

24

LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model

cuda-python

Just plain CUDA C++ with some Python for device control

numba-cuda
CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled

Triton

Abstraction to Tensor operations, less flexible, but often better optimized

25

NUMBA-CUDA

Imports:

Kernel definition:

Host <-> Device interaction:

Kernel execution:

import numpy as np
from numba import cuda

Kernel definition

@cuda.jit

def f(a, x, y):
like threadIdx.x + (blockIdx.x * blockDim.x)
tid = cuda.grid(1)
size = len(y)

if tid < size:
y[tid] = axx[tid] + y[tid]

Vector allocation and copy to Device
N = 100000

X = cuda.to_device(np.random.random(N))
y =

a

Lpha = 2.

Kernel execution

Enough threads per block for several warps per block

nthreads = 256

Enough blocks to cover the entire vector depending on its length
nblocks = (len(a) // nthreads) + 1

f[nblocks, nthreads](a, X, V)

Copying data back to host and print
print(y.copy_to_host())

26

HIGH-LEVEL

Taichi

JIT compiled Python code as kernels

No more detailed GPU thread control required

CuPy

No more kernel writing
Basically Numpy, but on a GPU

Adds a few functions for data transfer and device control

Deep Learning focused (include AutoGrad)

Jax
TensorFlow
PyTorch

27

Imports:

Host <-> Device interaction:

Execute operation:

CUPY

import cupy
import numpy as np

Vector allocation and copy to Device
= 1000000
cupy.asarray(np.random.random(N))
= cupy.asarray(np.random.random(N))
alpha = 2.0

N
X
y

Execute saxpy op
y += alpha *x X

Explicit copy back to host and print
(implicit often also works)

print(cupy.asnumpy(y))

28

CUPY: SOFTWARE ARCHITECTURE

CuPy
R R R R R AR i
. : Linear algebra = :
Usgr : DNN _. . g C e e e : Random Sort . GPU
defined Utility - Sparse matrix numbers ' " data
CUDA : cuSOLVER : . transfer
kernel
cuBLAS Thrust
] cumias mm- el
CUDA

NVIDIA GPU

29

WRAPPING UP

NEURAL NETWORKS AND GPUS ./

Matrix multiplication ¥ = W - X is at the heart of
neural networks

N? elements - independent but very similar ’ ‘

computations

Compute scales with O(N?>), memory with O(N?)
GPUs are

massively parallel vector-based processors
excellent in compute, limited in memory capacity

Bonus: highly energy efficient => many operations per
Watt

<,
<,
%

structured
parallelism

computationally
(intensive

NVIDIA

31

SUMMARY

Key differences to a CPU

Much (many much’es) more parallelism L L

Latency is not minimized, but tolerated = e

Offload compute model

No general-purpose programming (yet?) ‘ ‘

Memory capacity is small Address-sliced XBARs

Single-thread performance is a nightmare ‘ ‘
Programming GPUs

Both low- and high-level abstractions are available 2 slice 2 slice

The best library highly depends on the use-case

DISCUSSION
EXERCISE 02

Groups presenting today:
Code: Group 6 (Daniela & Finn)
Plots/Observations: Group 5 (Vincent & Julius)

GENERAL REMARKS

LR observation across groups

Low LRs are slow, higher LRs fast & just as good
But: Our current task (MNIST) is pretty simple, be careful to generalise this

Two equivalent ways to compute sigmoid derivative:

X

1 e
o(x) = T — 0(x) = 1+ o = o(x)(1 — o(x))

Gradient normalisation

Gradient must be normalised to batch size, otherwise LR depends on batch size

Please use robin.janssen®@ziti.uni-heidelberg.de (not @stud...) v

34

mailto:robin.janssen@ziti.uni-heidelberg.de

THIRD (AND FINAL) EXERCISE

Weights and Biases logging (wandb.ai)
Port NumPy implementation to CuPy

Code template: ex2 solution

Ly

GPU access: HAWAII cluster (how_to_cluster .

, , , e "u |
Account credentials via email - .l" 1 5"T
I L -
Experiment with different network sizes - - - -‘.:-‘t"ﬂ.
Compare CPU and GPU execution times - "ﬁ_‘b.":i .l.'
To be submitted via e-mail by: - _;.:;.t:'. T -
Wednesday 9:00 E . :E
———

Discussion after project examples

https://hawaii.ziti.uni-heidelberg.de/teaching/
ap_nn_from_scratch_materials_wise2025/

https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/

