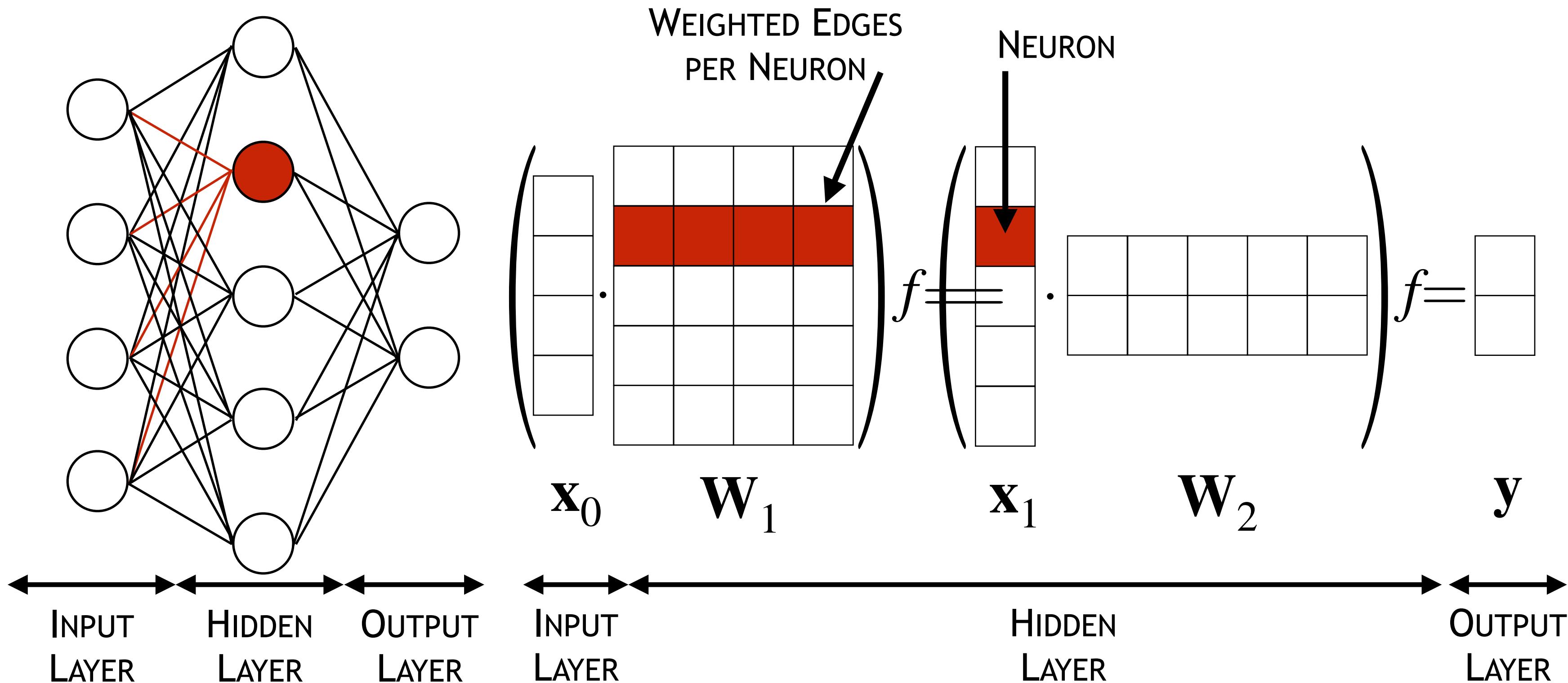


NEURAL NETWORKS FROM SCRATCH

LECTURE 03 - GPU PROGRAMMING

Hendrik Borras, Robin Janssen
{hendrik.borras, robin.janssen}@ziti.uni-heidelberg.de,
HAWAII Lab, Institute of Computer Engineering
Heidelberg University

REMINDER: NEURAL NETWORKS ARE MASSIVE MATRIX MULTIPLY CONSTRUCTS



How do we execute this quickly and thus make it scalable?

GPU COMPUTING

GPU BACKGROUND

Primary use in gaming

Each console has a
(powerful) GPU

Meantime photorealistic

Graphics: big, multi-dimensional floating-point operations in parallel

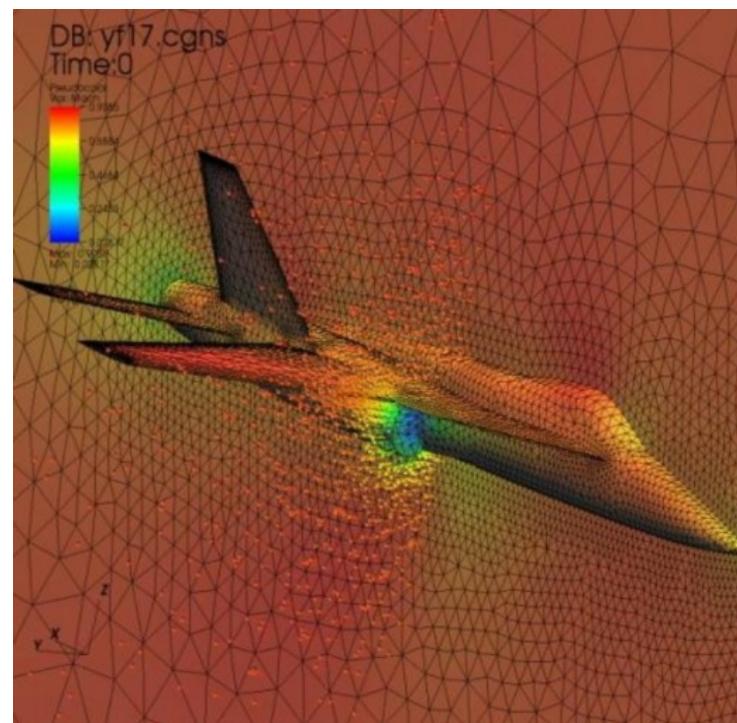
Programmable

Since ~2007 used for general-purpose computing

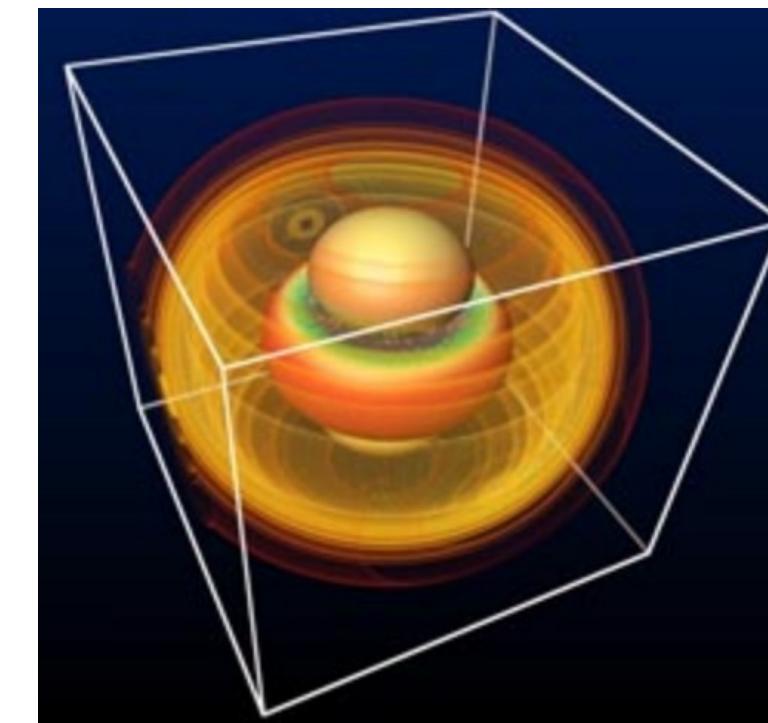
CUDA

NVIDIA

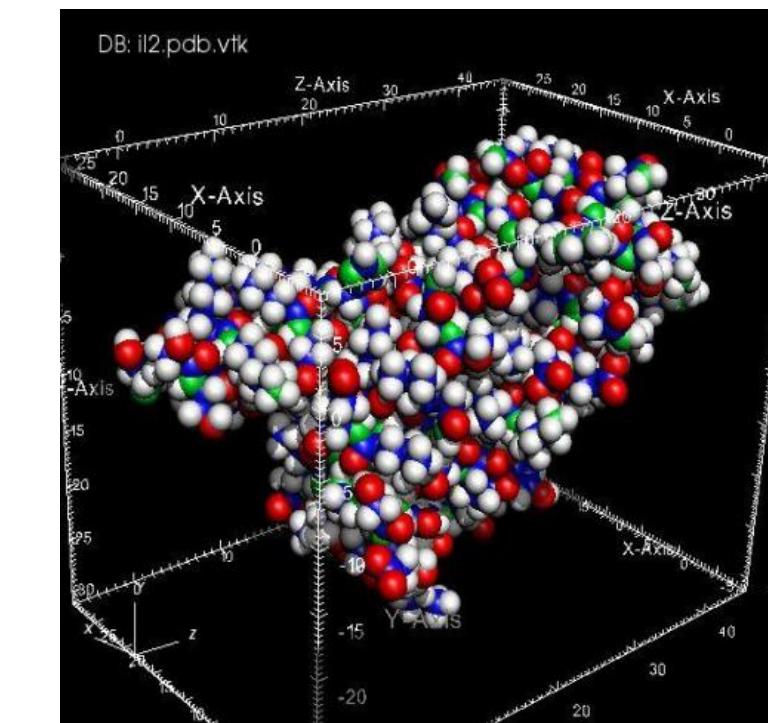
Rafael Ross



CFD



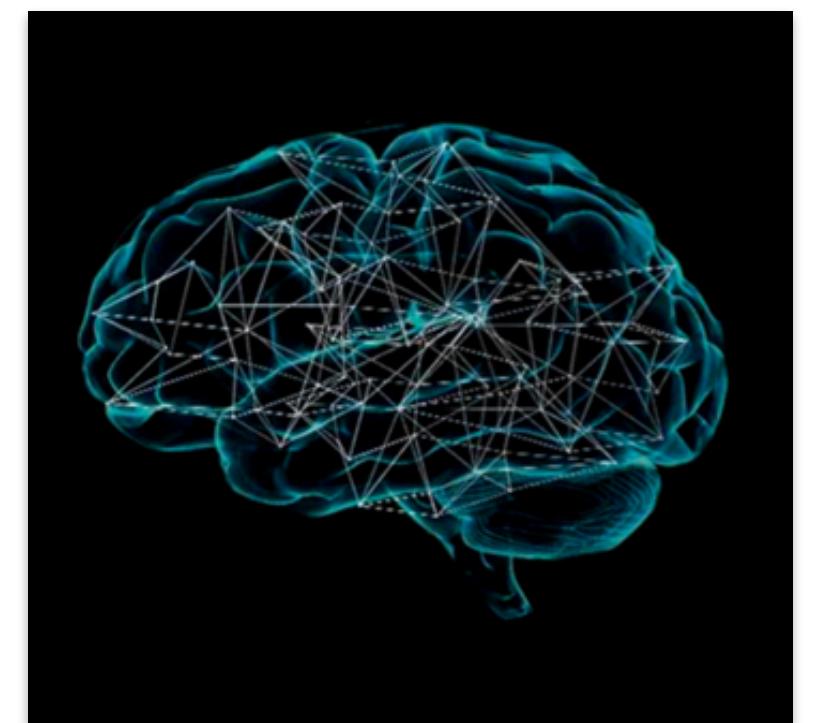
Cosmology



Molecular Dynamics



Weather/climate research



Machine Learning

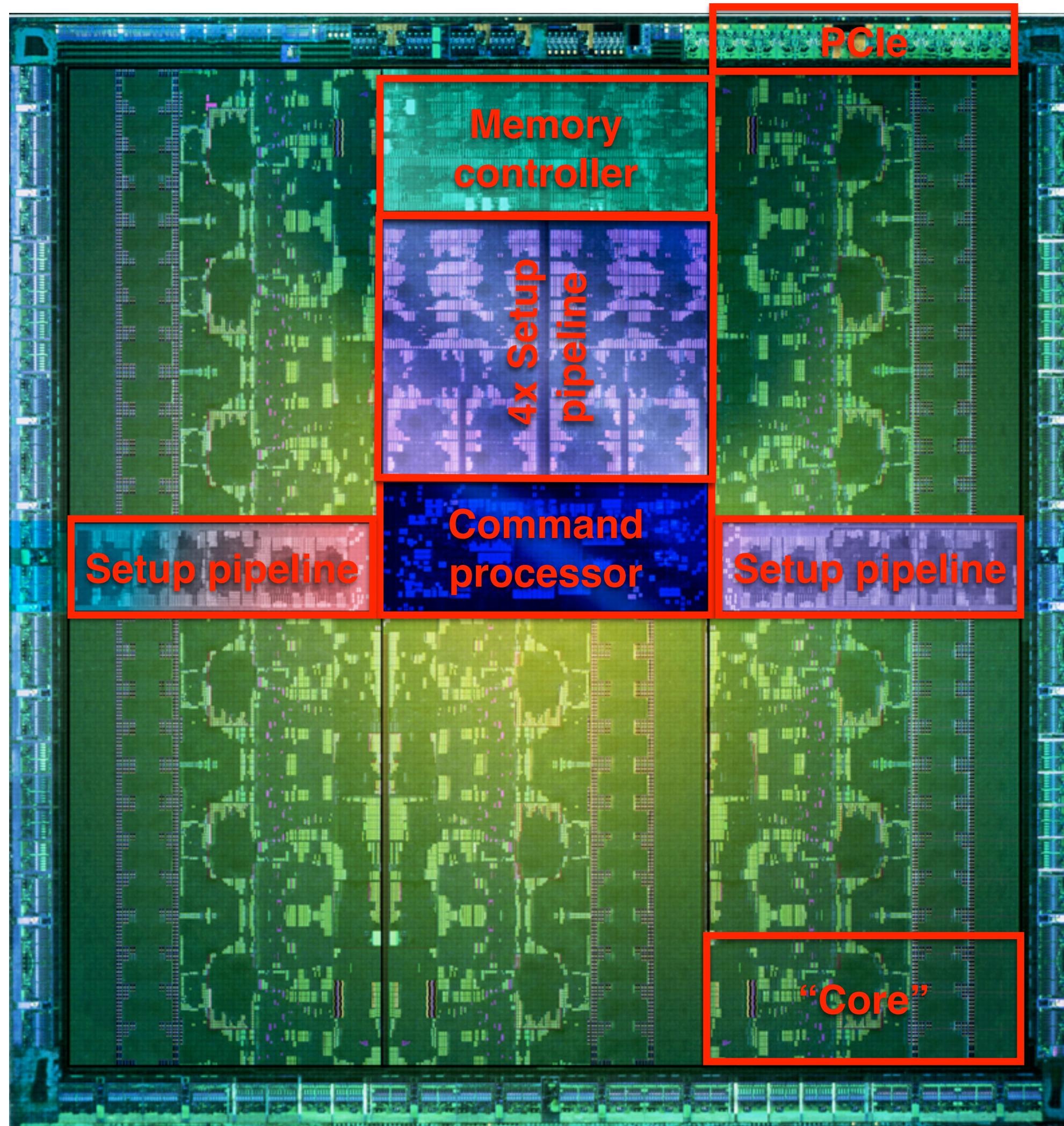
Tera-FLOP/s
September 1997

top500.org

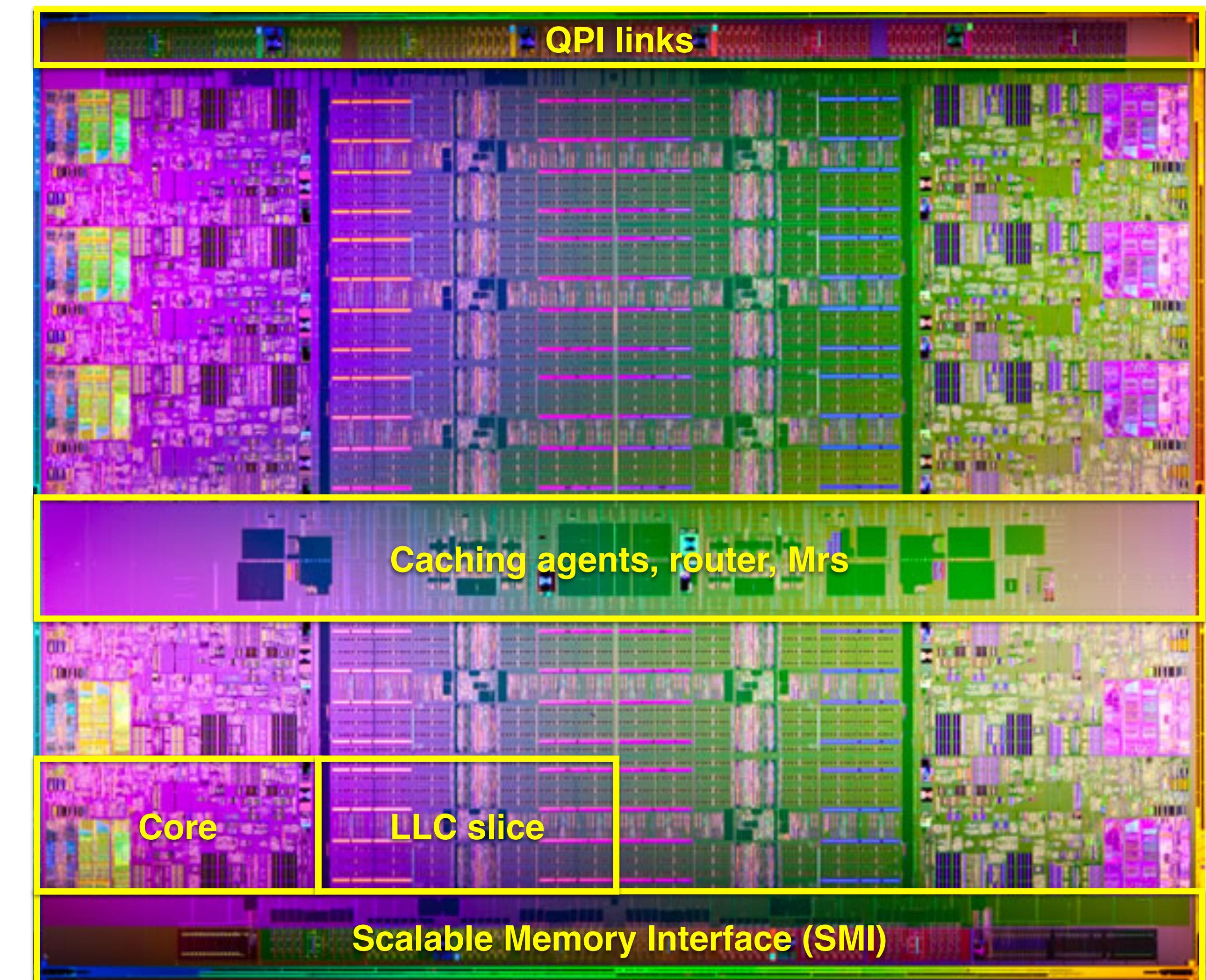
15 years

10 years

DIE SHOTS - CPU OR GPU?



NVIDIA Kepler- GK110

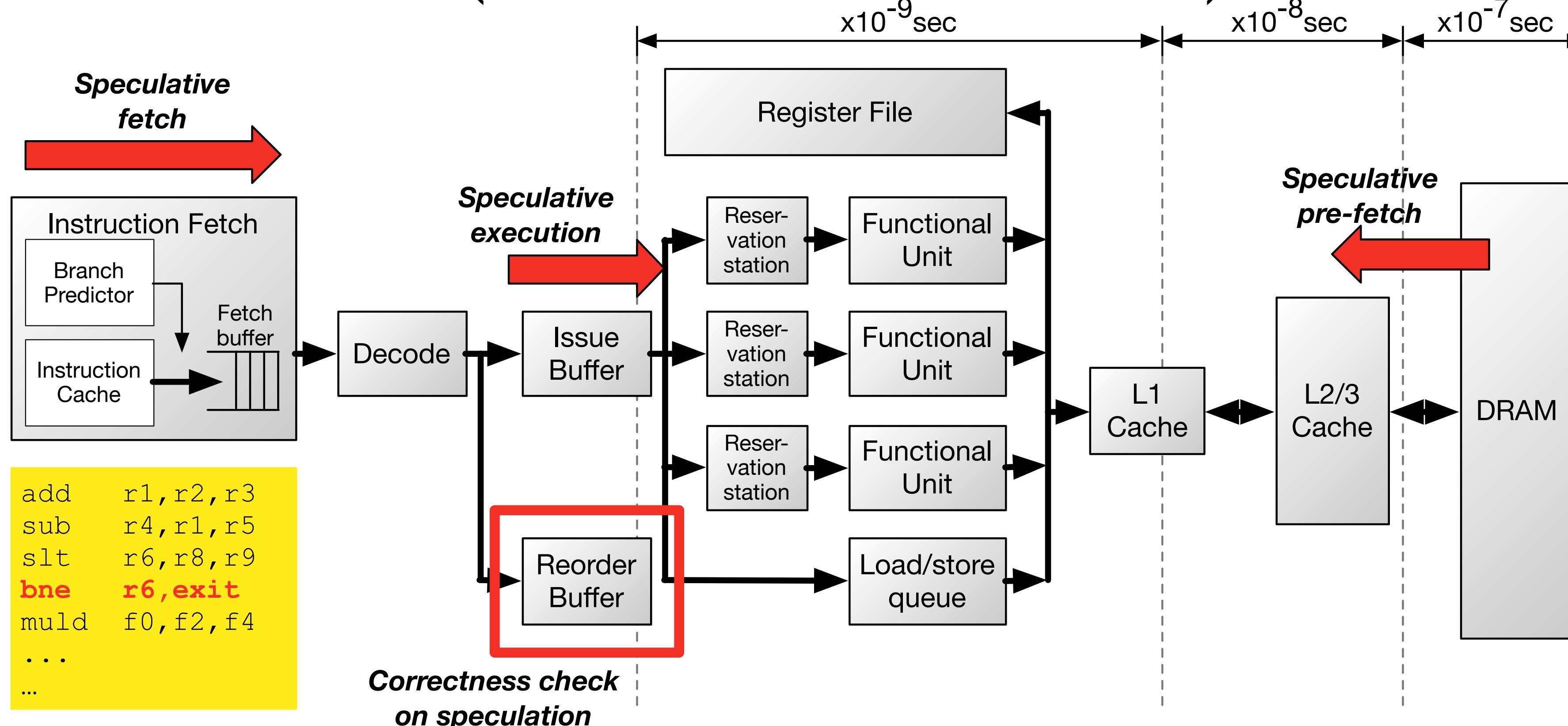


Intel Xeon E7 - Westmere-EX

	Xeon E5-2699v4 (Broadwell, 2016)	Tesla K20 (GK110) (Kepler, 2012)	NVIDIA P100 (GP100) (Pascal, 2016)	NVIDIA V100 (GV100) (Volta, 2017)
Core count	22 cores 2 FP-ALUs/core	13 SMs 64/SM(DP), 192/SM(SP)	~3-4	56 SMs 32/SM(DP), 64/SM(SP)
Frequency	2.2-3.6GHz	0.7GHz	1.328-1.480GHz	1.455GHz
Effective vector width	256bit (SP/DP) AVX 2.0	1024bit (SP), 2048bit (DP) static grouping	1024bit (SP), 2048bit (DP) dynamic grouping	
Peak Perf.	633.6 GF/s (DP)	1,165 GF/s (DP), SP x3	5.3 TF/s (DP), SP x2	7.5 TF/s (DP), SP x2
Use mode	latency-oriented		throughput-oriented	
Latency	minimization		toleration	
Programming	10s of threads		10,000s+ of threads	
Memory bandwidth	76.8 GB/s 128bit DDR4-2400	250 GB/s 384-bit GDDR-5		720 GB/s 4096-bit HBM2
Memory	1.54TB	5 GB	16G	32G
Die size	456 mm ²	550mm ²	610mm ²	815mm ²
Transistor	7.2 billion	7.1 billion	15.3 billion	21.1 billion
Technology	14nm	28nm	16nm FinFET	12 nm FFN
Power	145W	250W	300W	300W
Power efficiency	4.37 GF/Watt (DP) 8.74 GF/Watt (SP)	4.66 GF/Watt (DP) 14 GF/Watt (SP)	17.66 GF/Watt (DP) 35 GF/Watt (SP)	25 GF/Watt (DP) 50 GF/Watt (SP)

HARDWARE ARCHITECTURE

MICROARCHITECTURE EXAMPLE DRIVEN BY MOORE (& DENNARD SCALING)

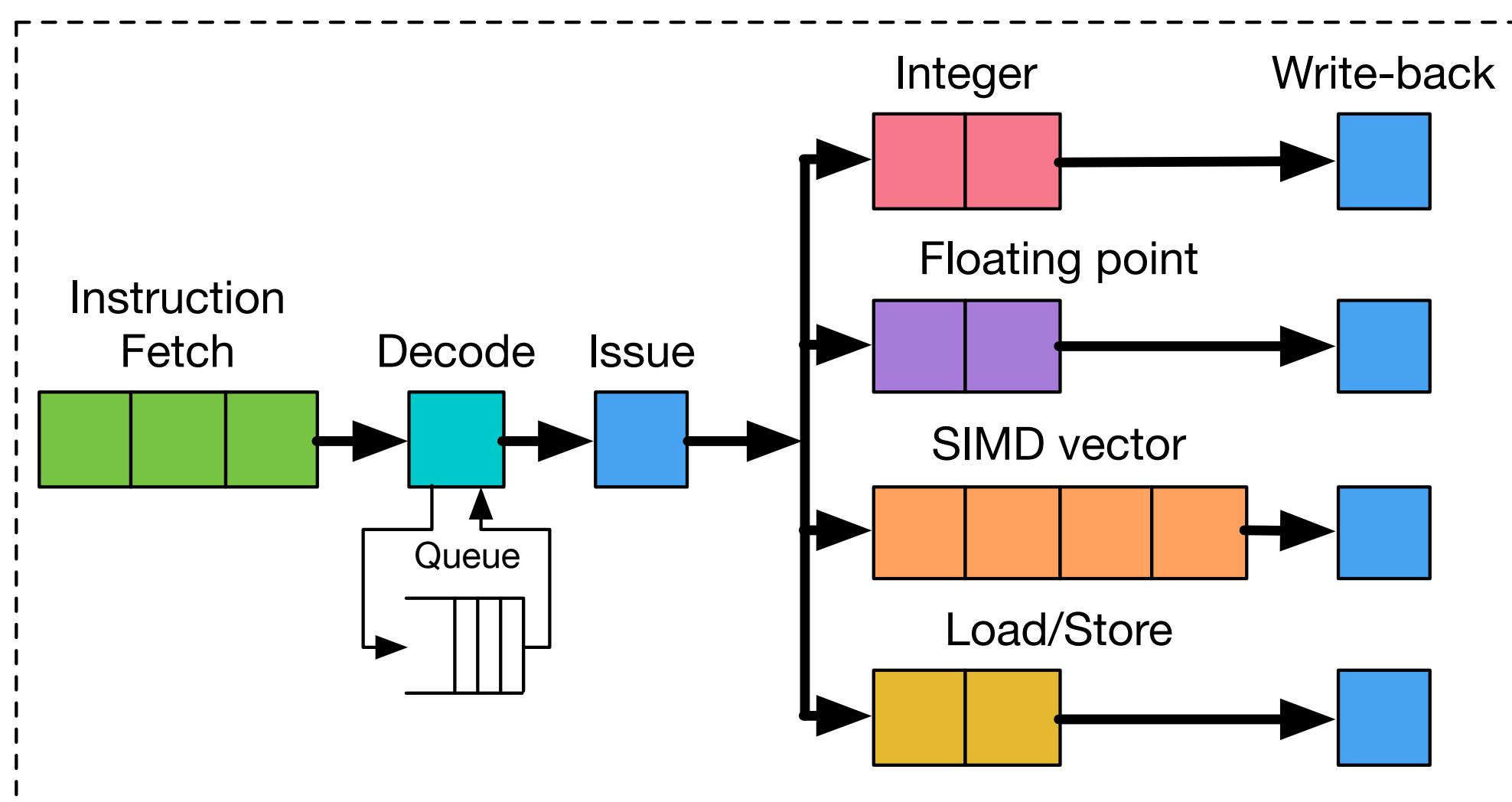
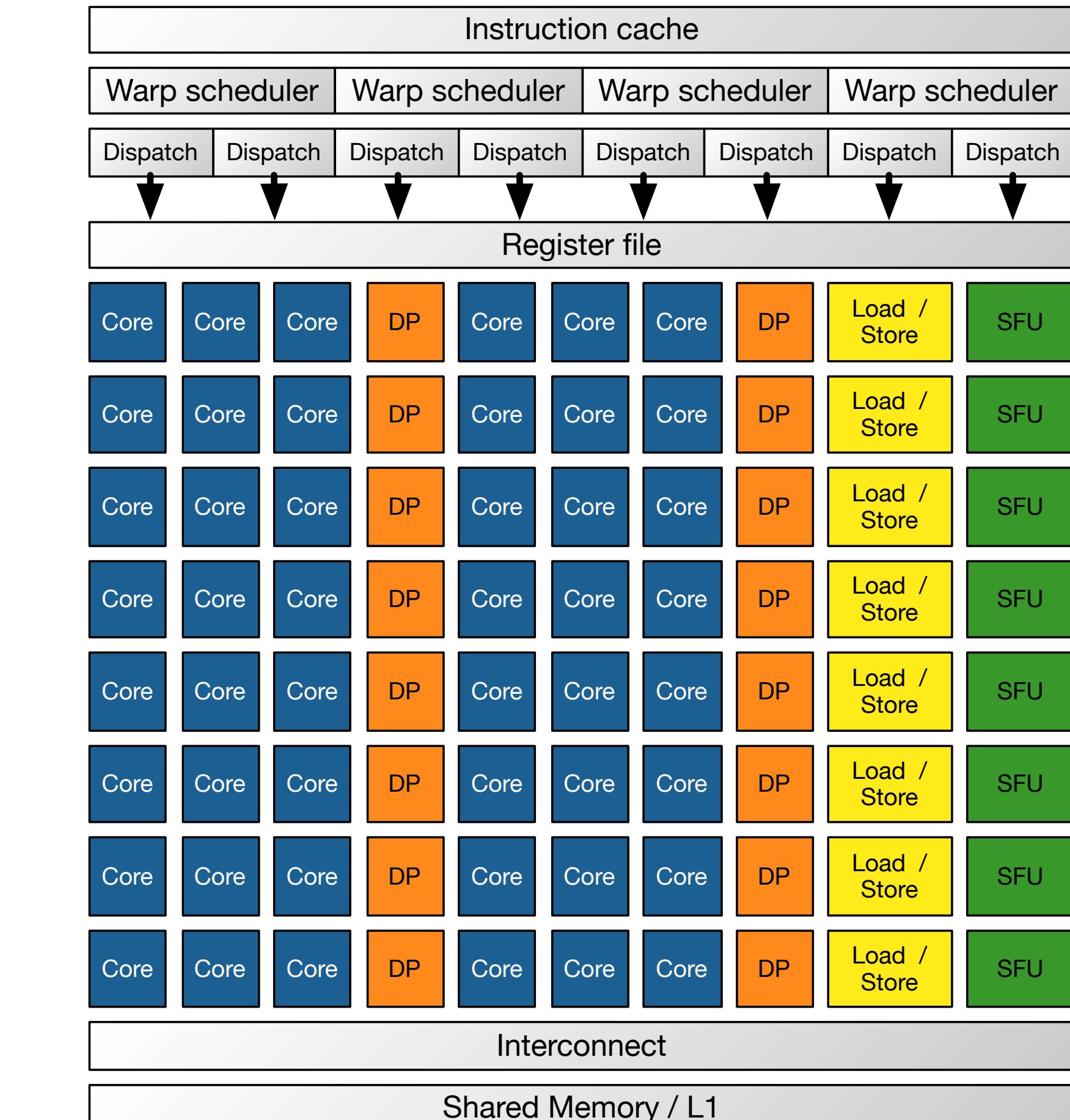


More transistors
Frequency scaling
Locality (spatial/temporal)
Predictable control flow

Multiple, deep pipelines
Latency minimization & hiding
Speculation everywhere

POST-DENNARD: TRANSITION TO MASSIVELY PARALLEL MICROARCHITECTURES

$$P = afCV^2 + VI_{leakage} \propto f^3$$

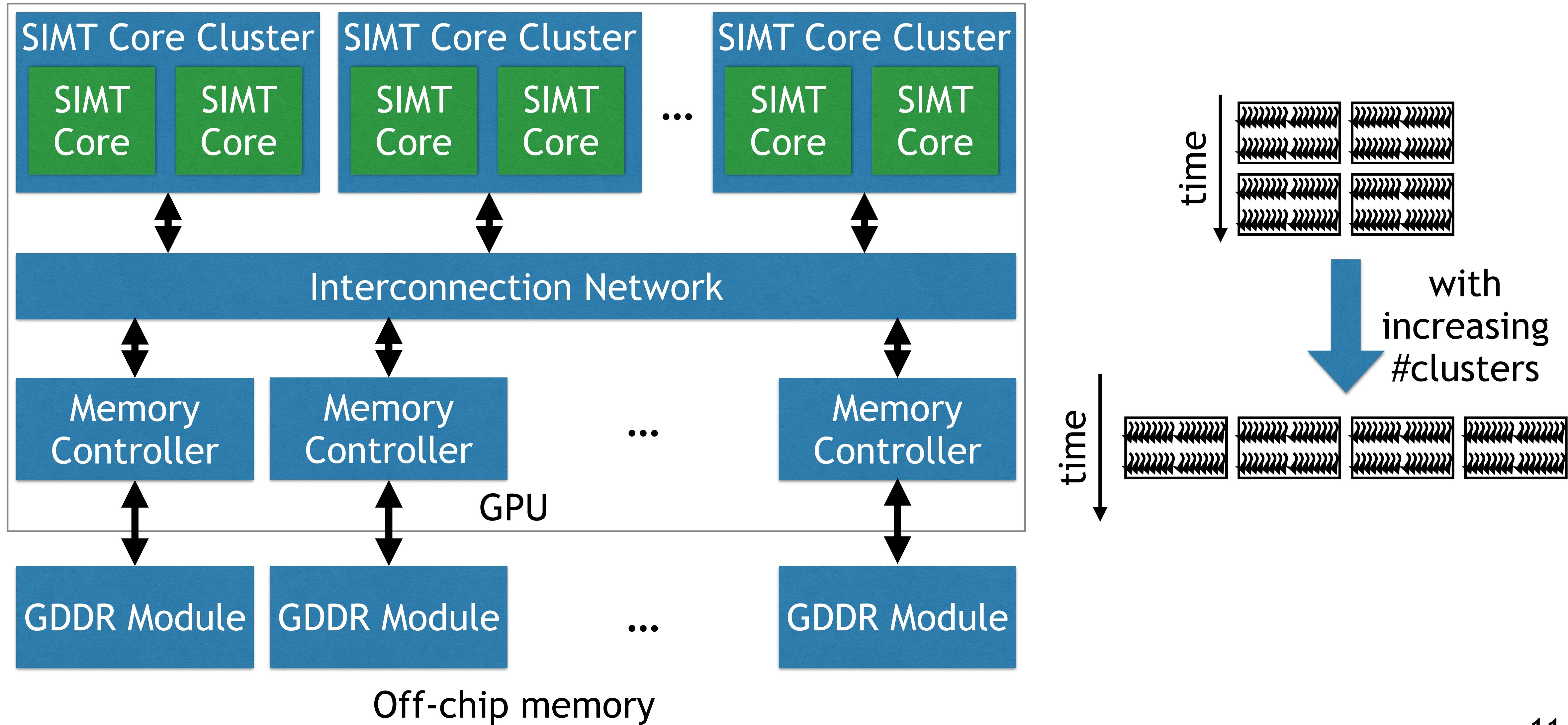


Frequency reduction
In-order pipelines

Replication

Massively parallel
Energy efficient

GPU ARCHITECTURE TOP-LEVEL VIEW



MIND THE MEMORY HIERARCHY

Intel Sandy Bridge

Reg.
1kB 5TB/s

L1
512kB 1TB/s

L2
2MB

LLC
8MB, 500GB/s

Main memory
TBs, 20GB/s

GK110

Reg.
~4MB, 40TB/s

SM
1MB 1TB/s

LLC
1.5MB, 500GB/s

GPU memory
4GB, 150GB/s

GP100

Reg.
14MB

SM
~4MB

LLC
4MB

GPU memory
16GB, 800GB/s

GA100

Reg.
32MB

SM
24MB

LLC
40MB

GPU memory
48GB, 1.9TB/s

SOFTWARE VIEW

BULK-SYNCHRONOUS PARALLEL

In 1990, Valiant already described GPU computing pretty well

Superstep

Compute, communicate, synchronize

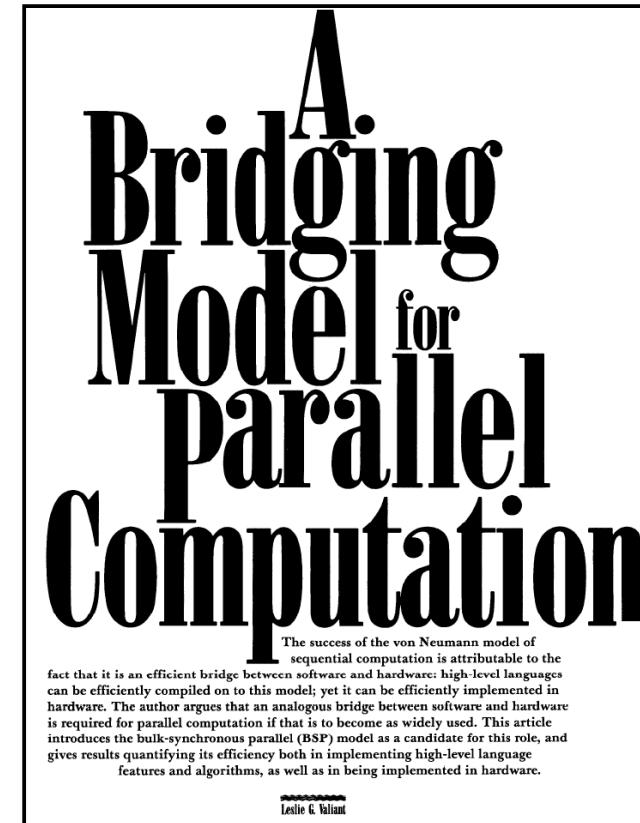
Parallel slackness: # of virtual processors v , physical processors p

$v = 1$: not viable

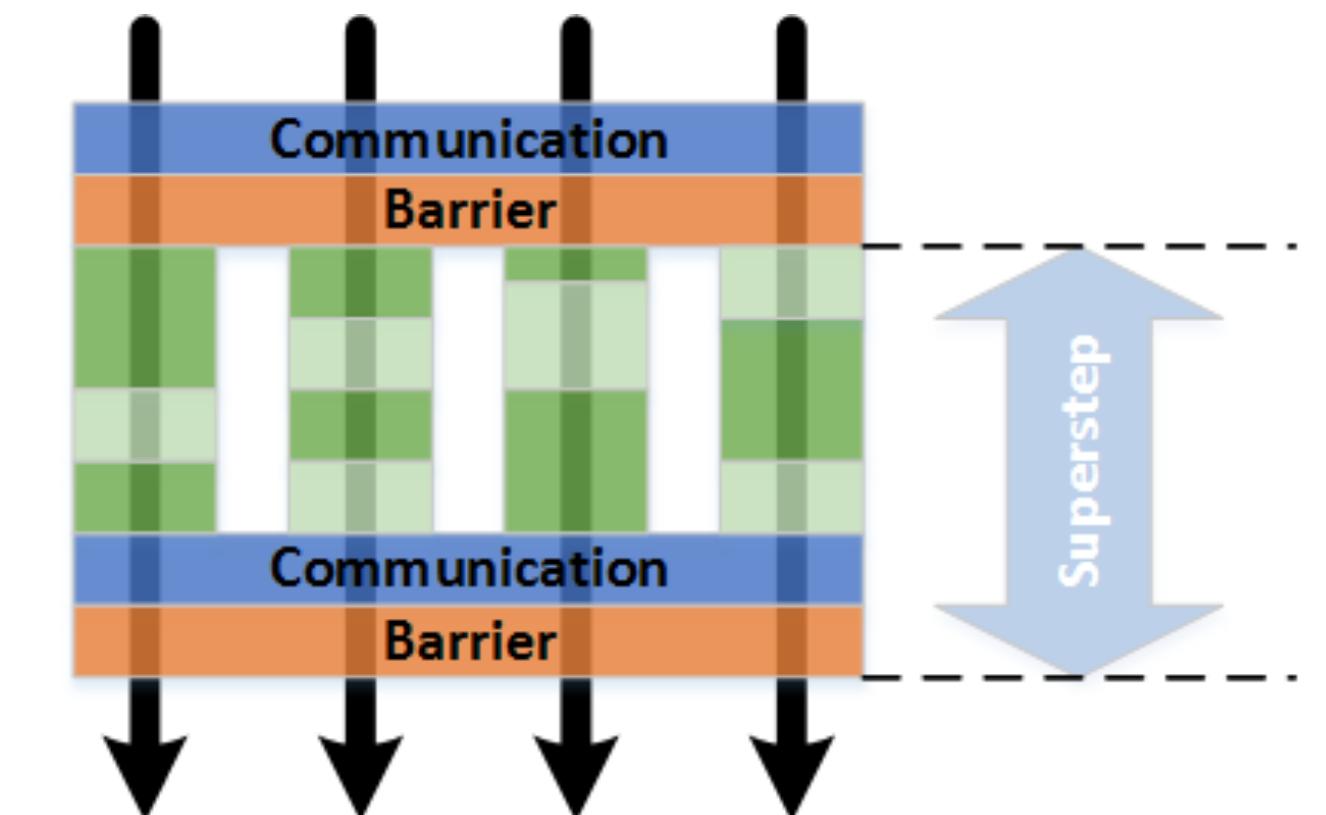
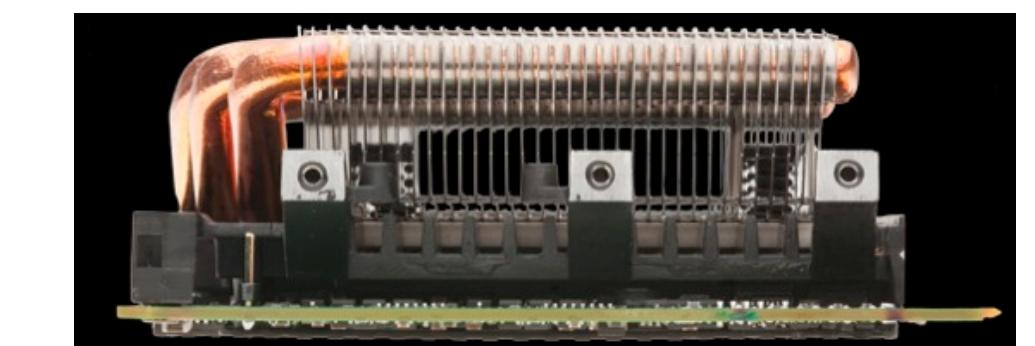
$v = p$: unpromising wrt optimality

$v \gg p$: leverage slack to schedule and pipeline computation and communication efficiently

Extremely scalable, bad for unbalanced parallelism



Leslie G. Valiant, *A bridging model for parallel computation*, *Communications of the ACM*, Volume 33 Issue 8, Aug. 1990



THE BEAUTY OF SIMPLICITY

Thread-collective computation and memory accesses

Thread ID determines data element

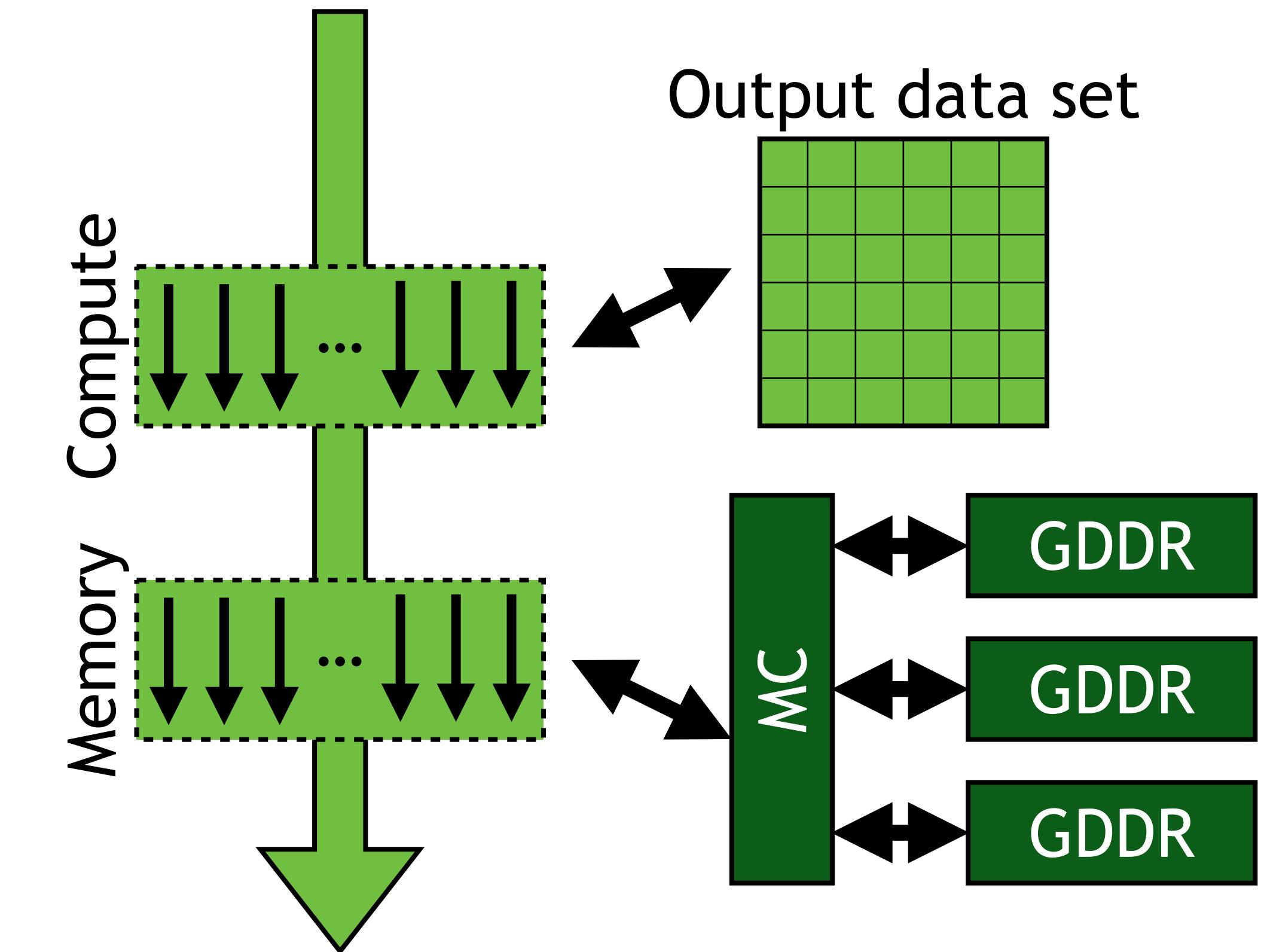
GPU collaborative computing

One thread per output element

Schedulers exploit parallel slackness

GPU collaborative memory access

One thread per data element



-> If you do something on a GPU, do it collaboratively with all threads

PROGRAMMABILITY OF MASSIVE PARALLELIZATION

Vector ISAs are great

Compact: one instruction for multiple data elements

Parallel: N operations are independent

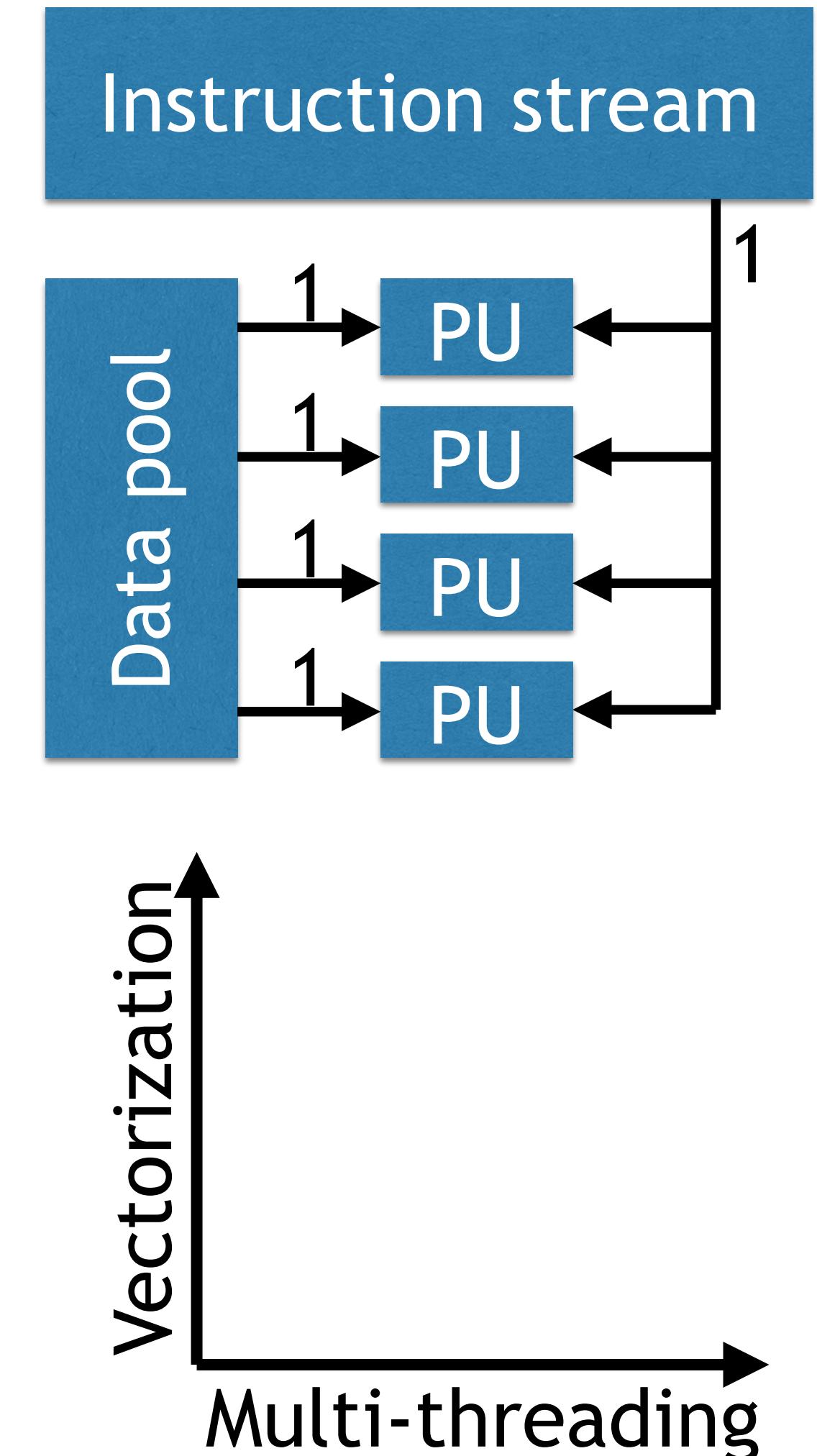
Expressive: complex memory accesses (irregular strides)

Vector ISAs are bad

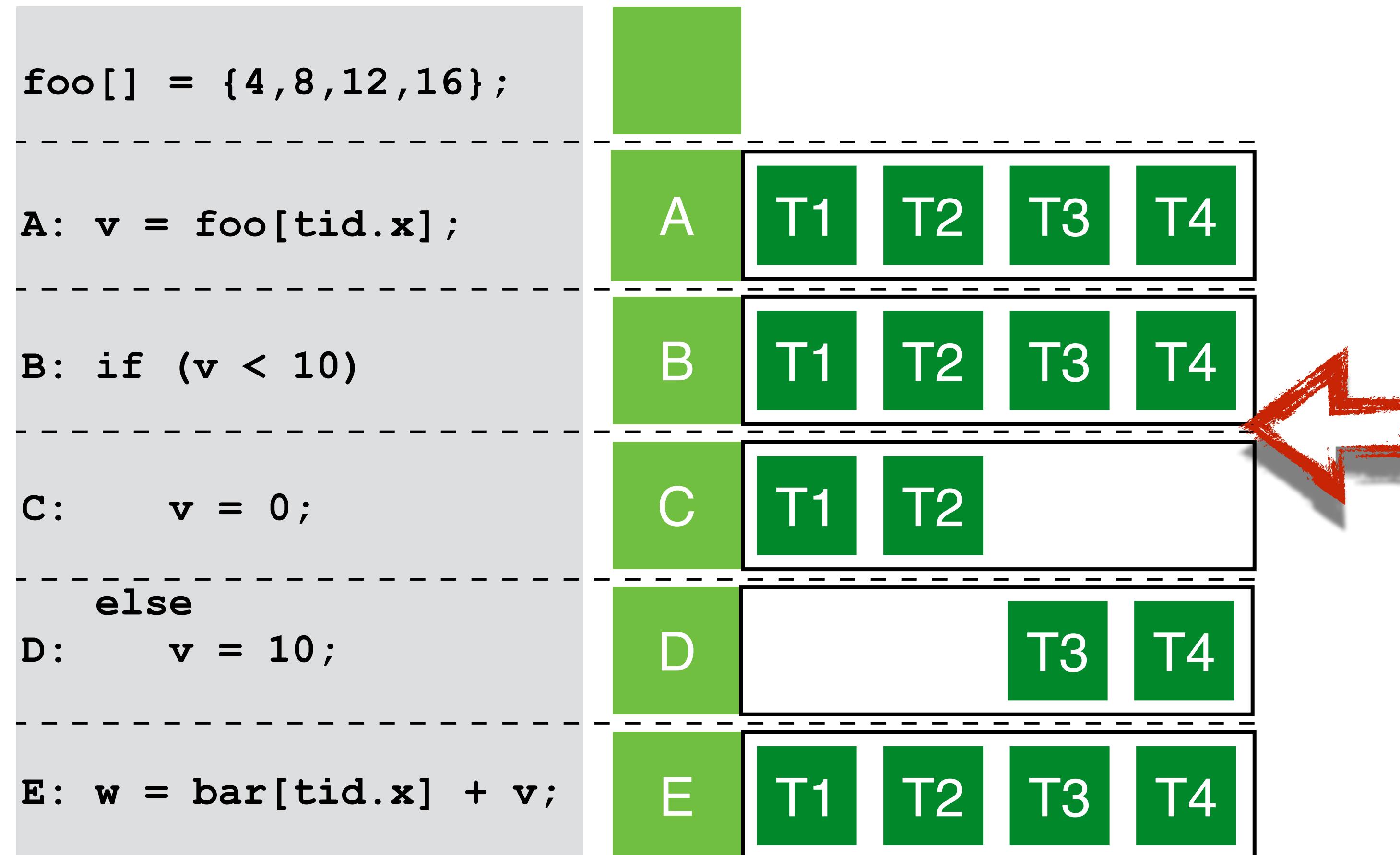
Orthogonal to multi-threading

Static in size, static in selection, mixed semantic model for vector/scalar instructions, C/C++ is scalar

4x SIMD example



SIMT EXECUTION MODEL



Programmer sees
independent scalar threads
Illusion

GPU HW bundles threads
into warps

Warps run in lockstep on
vector-like hardware (SIMD)

How is divergent control
flow handled?

ACCESSING MEMORY

Explicit memory hierarchy

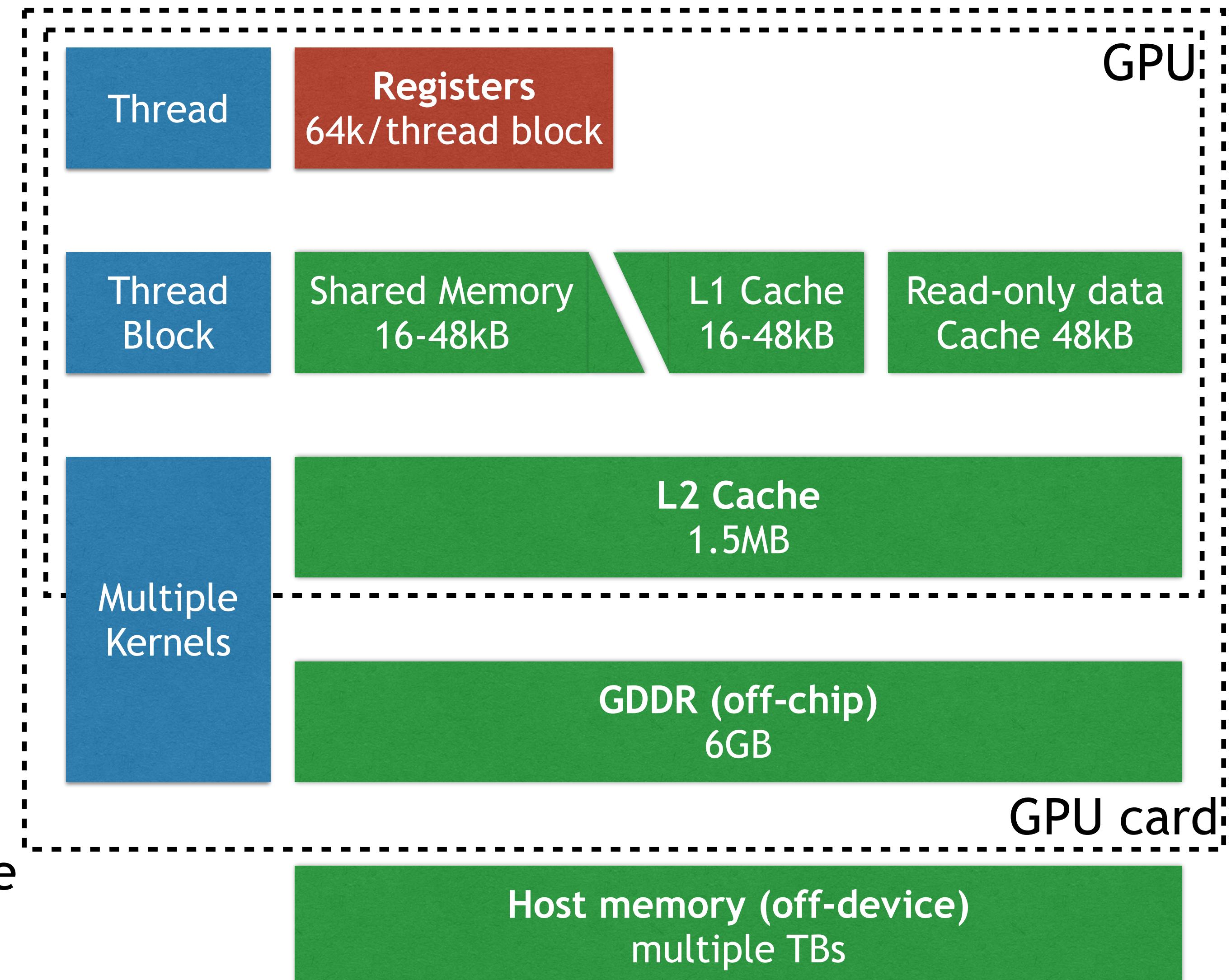
Manual GPU memory fills & spilling

Manual shared memory fills

Explicit memory hierarchy simplifies coherence & consistency

No guarantees except for kernel completion boundaries

Software-controlled coherence



OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step

SIMT: single instruction, multiple threads

IT'S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

IT'S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

MAKING GPU USAGE EASY

GPU LIBRARIES

PROGRAMMING MODEL

CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution

Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions

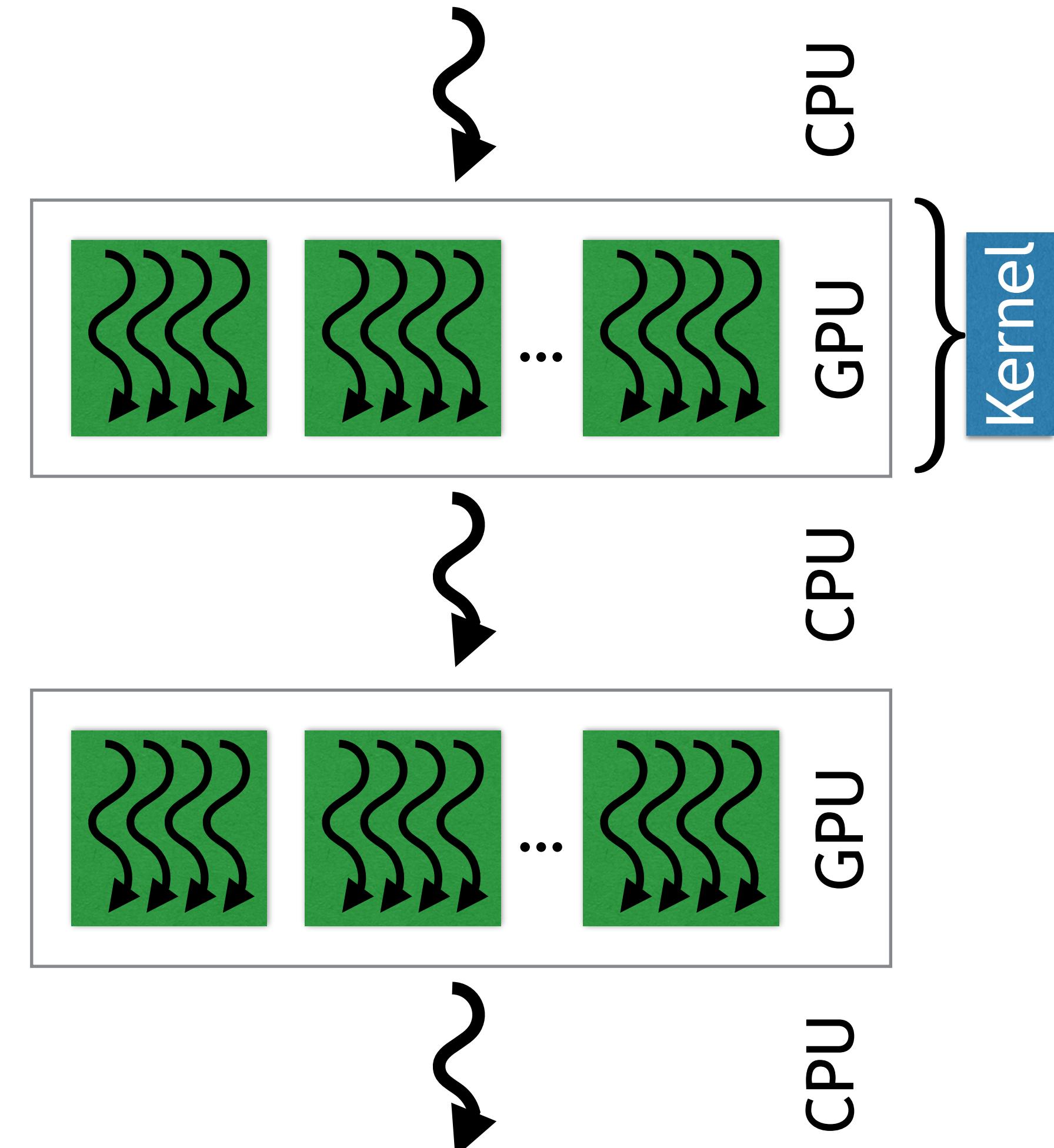
1. Hierarchy of threads
2. Shared memory
3. Barrier synchronization

Exploiting parallelism

Fine-grain data-level parallelism (DLP)

Thread-level parallelism (TLP)

Inner loops
Threads
Kernels



JUST-IN-TIME COMPIRATION

Device code only supports C-subset of C++ (getting better)

Compile with nvcc

Compiler Driver

Calls other tools as required

cudacc, g++, clang, ...

Output

C code (host CPU Code)

Either PTX object code, or source code for run-time interpretation

PTX (Parallel Thread Execution)

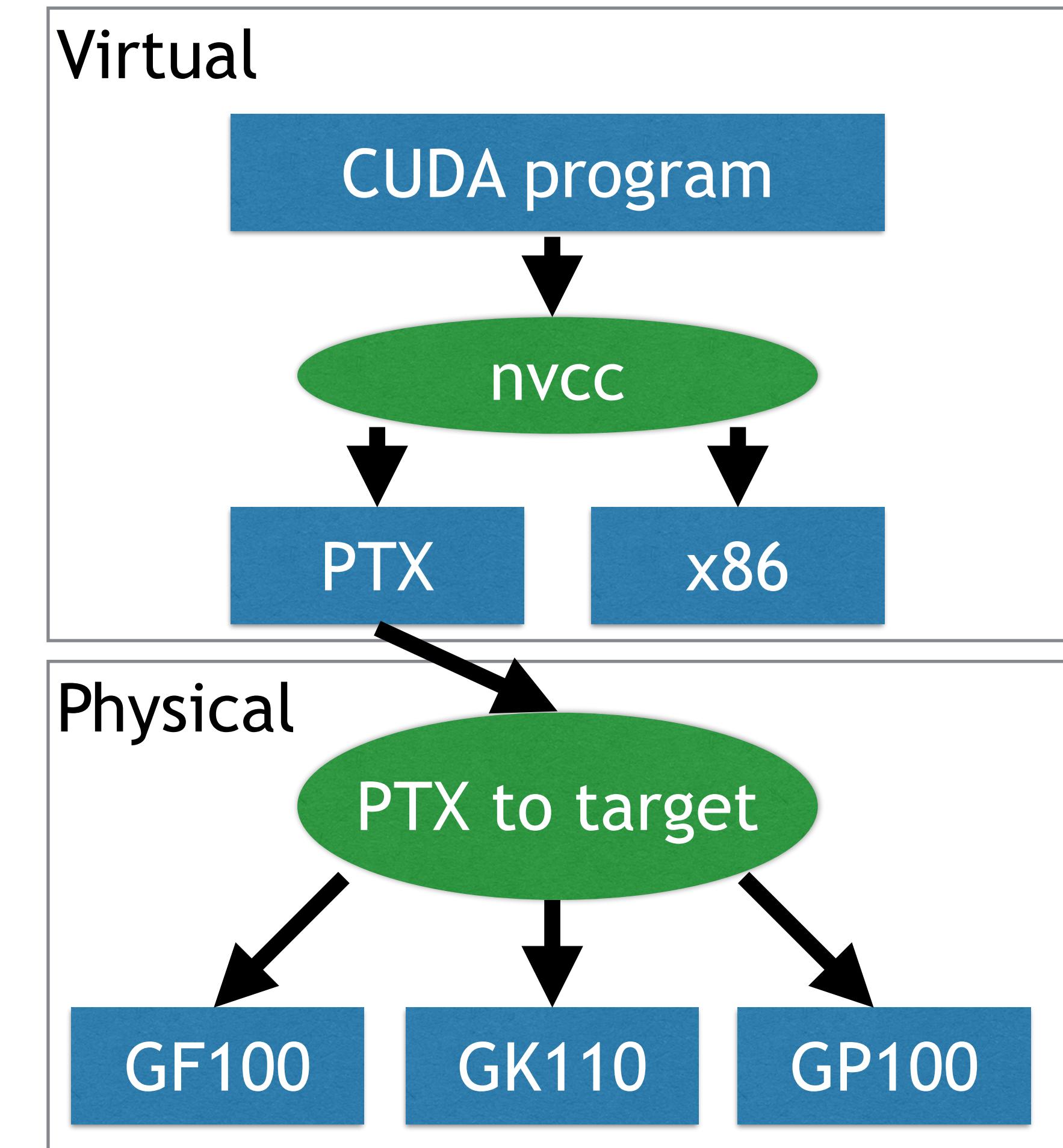
Virtual Machine and ISA

Execution resources and state

Linking

CUDA runtime library cudart

CUDA core library cuda



SAXPY EXAMPLE

$$y[i] = \alpha \cdot x[i] + y[i]$$

SAXPY: Scalar Alpha X Plus Y

Simple test to demonstrate GPU programming

Will start with lowest programming paradigm: CUDA

End at highest level abstraction: CuPy

Source code contains kernels for the GPU and the CPU

CUDA EXAMPLE

Kernel definition:

```
__global__  
void saxpy(int n, float a, float *x, float *y)  
{  
    int i = blockIdx.x*blockDim.x + threadIdx.x;  
    if (i < n) y[i] = a*x[i] + y[i];  
}
```

Host <-> Device interaction:

Kernel execution:

Host <-> Device interaction:

```
int main(void)  
{  
    int N = 20 * (1 << 20);  
    float *x, *y, *d_x, *d_y;  
    x = (float*)malloc(N*sizeof(float));  
    y = (float*)malloc(N*sizeof(float));  
  
    cudaMalloc(&d_x, N*sizeof(float));  
    cudaMalloc(&d_y, N*sizeof(float));  
  
    for (int i = 0; i < N; i++) {  
        x[i] = 1.0f;  
        y[i] = 2.0f;  
    }  
  
    cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);  
    cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);  
  
    // Perform SAXPY on 1M elements  
    saxpy<<<(N+511)/512, 512>>>(N, 2.0f, d_x, d_y);  
  
    cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);  
    cudaDeviceSynchronize();  
  
    // Free memory  
    cudaFree(d_x);  
    cudaFree(d_y);  
  
    // Do some printing  
}
```

LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model

cuda-python

Just plain CUDA C++ with some Python for device control

numba-cuda

CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled

Triton

Abstraction to Tensor operations, less flexible, but often better optimized

NUMBA-CUDA

Imports:

```
import numpy as np
from numba import cuda

# Kernel definition
@cuda.jit
def f(a, x, y):
    # like threadIdx.x + (blockIdx.x * blockDim.x)
    tid = cuda.grid(1)
    size = len(y)

    if tid < size:
        y[tid] = a*x[tid] + y[tid]

# Vector allocation and copy to Device
N = 100000
x = cuda.to_device(np.random.random(N))
y = cuda.to_device(np.random.random(N))
alpha = 2.

# Kernel execution
# Enough threads per block for several warps per block
nthreads = 256
# Enough blocks to cover the entire vector depending on its length
nblocks = (len(a) // nthreads) + 1
f[nblocks, nthreads](a, x, y)

# Copying data back to host and print
print(y.copy_to_host())
```

Kernel definition:

Host <-> Device interaction:

Kernel execution:

HIGH-LEVEL

Taichi

- JIT compiled Python code as kernels

- No more detailed GPU thread control required

CuPy

- No more kernel writing

- Basically Numpy, but on a GPU

- Adds a few functions for data transfer and device control

Deep Learning focused (include AutoGrad)

- Jax

- TensorFlow

- PyTorch

CUPY

Imports:

```
import cupy
import numpy as np

# Vector allocation and copy to Device
N = 1000000
x = cupy.asarray(np.random.random(N))
y = cupy.asarray(np.random.random(N))
alpha = 2.0

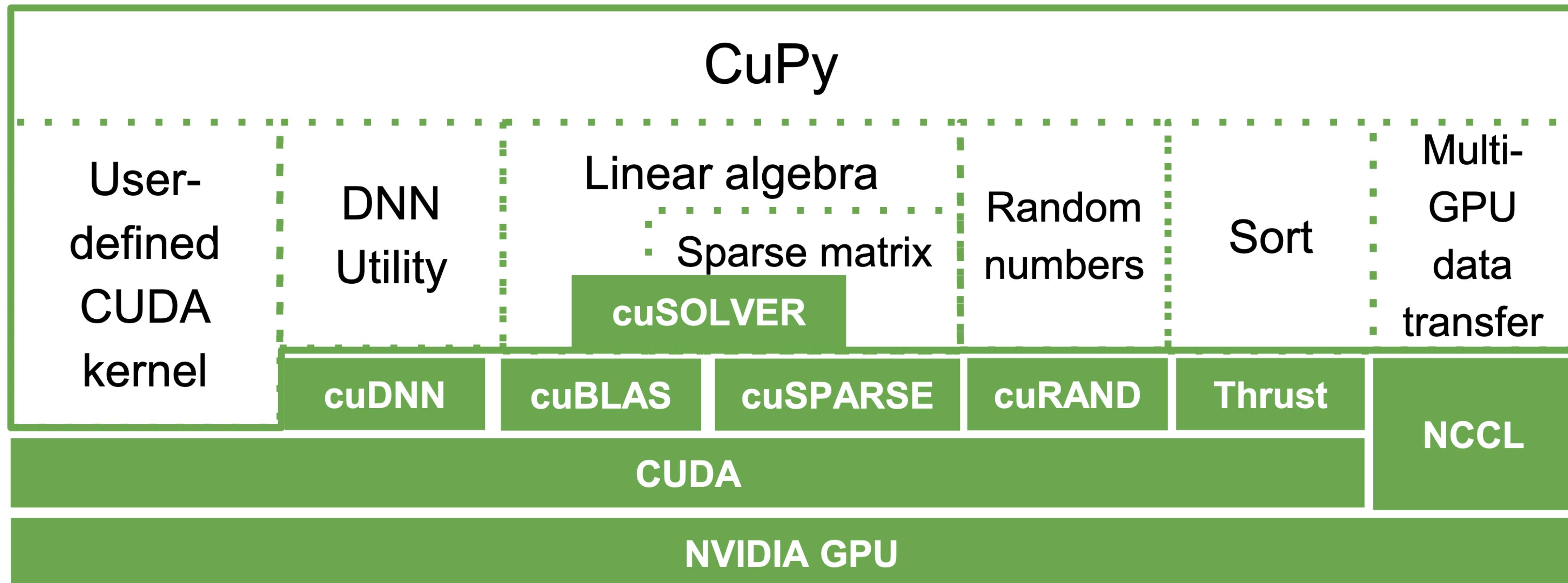
# Execute saxpy op
y += alpha * x

# Explicit copy back to host and print
# (implicit often also works)
print(cupy.asarray(y))
```

Host <-> Device interaction:

Execute operation:

CUPY: SOFTWARE ARCHITECTURE



WRAPPING UP

NEURAL NETWORKS AND GPUs

Matrix multiplication $Y = W \cdot X$ is at the heart of neural networks

N^2 elements - independent but very similar computations

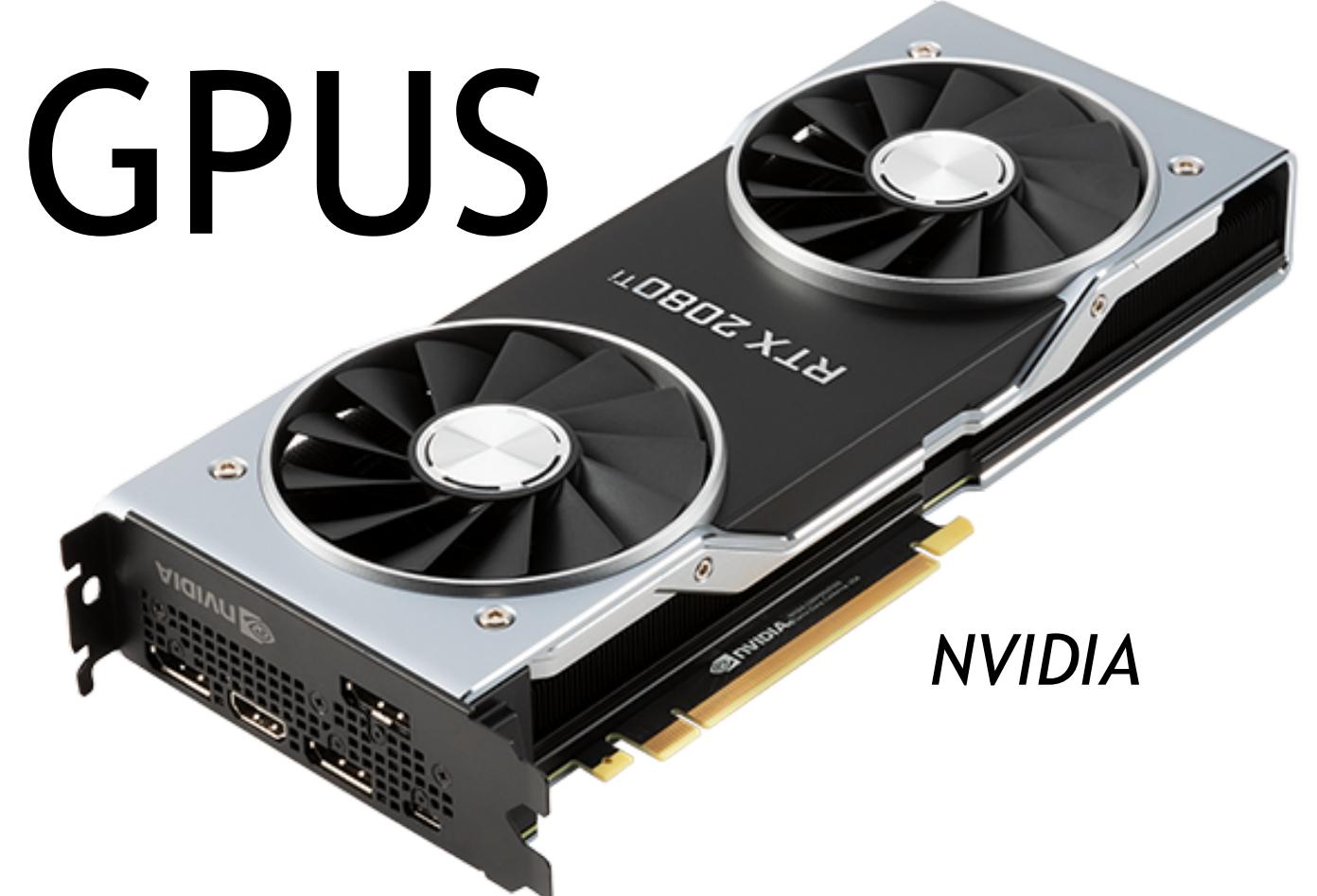
Compute scales with $\mathcal{O}(N^3)$, memory with $\mathcal{O}(N^2)$

GPUs are

massively parallel vector-based processors

excellent in compute, limited in memory capacity

Bonus: highly energy efficient => many operations per Watt



structured
parallelism

computationally
intensive

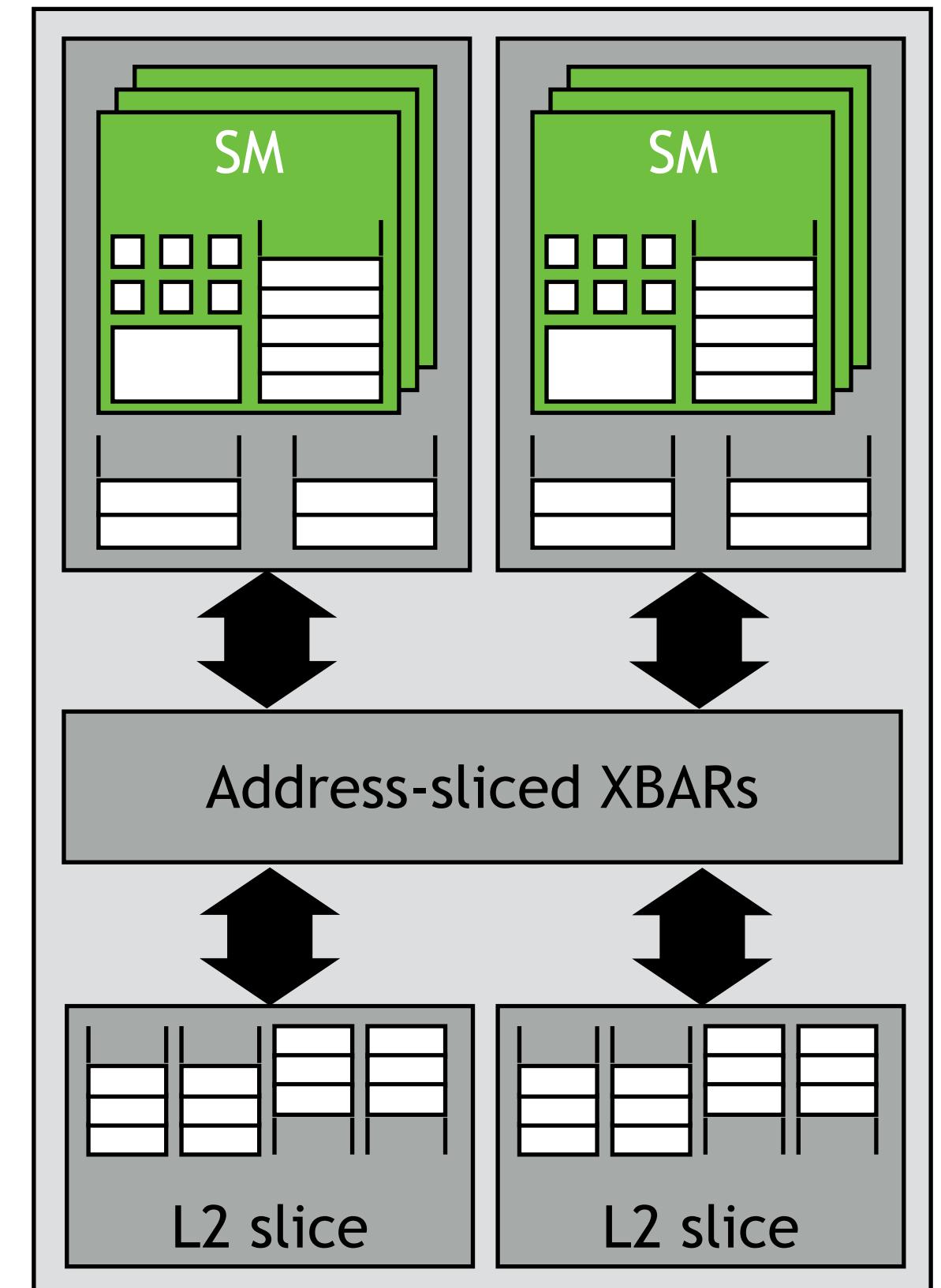
SUMMARY

Key differences to a CPU

- Much (many much'es) more parallelism
- Latency is not minimized, but tolerated
- Offload compute model
- No general-purpose programming (yet?)
- Memory capacity is small
- Single-thread performance is a nightmare

Programming GPUs

- Both low- and high-level abstractions are available
- The best library highly depends on the use-case



DISCUSSION EXERCISE 02

Groups presenting today:
Code: Group 6 (Daniela & Finn)
Plots/Observations: Group 5 (Vincent & Julius)

GENERAL REMARKS

LR observation across groups

Low LRs are slow, higher LRs fast & just as good

But: Our current task (MNIST) is pretty simple, be careful to generalise this

Two equivalent ways to compute sigmoid derivative:

$$\sigma(x) = \frac{1}{(1 + e^{-x})} \rightarrow \sigma'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = \sigma(x)(1 - \sigma(x))$$

Gradient normalisation

Gradient must be normalised to batch size, otherwise LR depends on batch size

Please use robin.janssen@ziti.uni-heidelberg.de (not @stud...)

THIRD (AND FINAL) EXERCISE

Weights and Biases logging (wandb.ai)

Port NumPy implementation to CuPy

Code template: ex2 solution

GPU access: HAWAII cluster (*how_to_cluster*)

Account credentials via email

Experiment with different network sizes

Compare CPU and GPU execution times

To be submitted via e-mail by:

Wednesday 9:00

Discussion after project examples

[https://hawaii.ziti.uni-heidelberg.de/teaching/
ap_nn_from_scratch_materials_wise2025/](https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/)