
NEURAL NETWORKS FROM SCRATCH
LECTURE 03 - GPU PROGRAMMING

Hendrik Borras, Robin Janssen
{hendrik.borras, robin.janssen}@ziti.uni-heidelberg.de,

HAWAII Lab, Institute of Computer Engineering
Heidelberg University

REMINDER: NEURAL NETWORKS ARE MASSIVE
MATRIX MULTIPLY CONSTRUCTS

2

How do we execute this quickly and thus make it scalable?

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

)
INPUT
LAYER

HIDDEN
LAYER

OUTPUT
LAYER

·<latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit> =<latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit>

INPUT
LAYER

HIDDEN
LAYER

OUTPUT
LAYER

WEIGHTED EDGES
PER NEURON

NEURON

x0 W1

f·<latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit><latexit sha1_base64="w1hSyzKNY9olbac7NyxBkPSA+3Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgRTxVMLXQhrLZbNqlm92wOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzokxwg5737VTW1jc2t6rbtZ3dvf2D+uFRx6hcUxZQJZTuRsQwwSULkKNg3UwzkkaCPUbjm5n/+MS04Uo+4CRjYUqGkiecErRS0KexwkG94TW9OdxV4pekASXag/pXP1Y0T5lEKogxPd/LMCyIRk4Fm9b6uWEZoWMyZD1LJUmZCYv5sVP3zCqxmyhtS6I7V39PFCQ1ZpJGtjMlODLL3kz8z+vlmFyHBZdZjkzSxaIkFy4qd/a5G3PNKIqJJYRqbm916YhoQtHmU7Mh+Msvr5LORdP3mv79ZaN1V8ZRhRM4hXPw4QpacAttCIACh2d4hTdHOi/Ou/OxaK045cwx/IHz+QPbco66</latexit>

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

)
<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

) =<latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit><latexit sha1_base64="vFOR9hc+DwbCLeqQeAbU7Y8bjAY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ8CKeWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOmX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3ncRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB481jMk=</latexit> f

<latexit sha1_base64="I7M8Rptcfj7965+LSlRwW+GxU74=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArQT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvatypV4pVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3FrjLY=</latexit>

)
x1 W2 y

GPU COMPUTING

GPU BACKGROUND
Primary use in gaming

Each console has a
(powerful) GPU

Meantime photorealistic

Graphics: big, multi-
dimensional floating-point
operations in parallel

Programmable

Since ~2007 used for
general-purpose computing

CUDA

4https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/

NVIDIA

https://80.lv/articles/ue4arch-interview-about-realiscit-environments-in-ue4/

5

CFD Cosmology Molecular
Dynamics

Weather/climate
research Machine Learning

nvidia.comtop500.org

Tera-FLOP/s
September 1997

Peta-FLOP/s
November 2012

15 years 10 years

Exa-FLOP/s
June 2022

DIE SHOTS - CPU OR GPU?

6Intel Xeon E7 - Westmere-EXNVIDIA Kepler- GK110

Command
processorSetup pipeline Setup pipeline

“Core”

PCIe

Memory
controller

 4
x

Se
tu

p
pi

pe
lin

e

QPI links

Scalable Memory Interface (SMI)

Caching agents, router, Mrs

Core LLC slice

Xeon E5-2699v4
(Broadwell, 2016)

Tesla K20 (GK110)
(Kepler, 2012)

NVIDIA P100 (GP100)
(Pascal, 2016)

NVIDIA V100 (GV100) 
(Volta, 2017)

Core count 22 cores
2 FP-ALUs/core

13 SMs
64/SM(DP), 192/SM(SP)

56 SMs
32/SM(DP), 64/SM(SP)

84 SMs
32/SM(DP), 64/SM(SP)

Frequency 2.2-3.6GHz 0.7GHz 1.328-1.480GHz 1.455GHz
Effective

vector width
256bit (SP/DP)

AVX 2.0
1024bit (SP), 2048bit (DP)

static grouping
1024bit (SP), 2048bit (DP)

dynamic grouping
Peak Perf. 633.6 GF/s (DP) 1,165 GF/s (DP), SP x3 5.3 TF/s (DP), SP x2 7.5 TF/s (DP), SP x2
Use mode latency-oriented throughput-oriented
Latency

treatment
minimization toleration

Programming 10s of threads 10,000s+ of threads
Memory

bandwidth
76.8 GB/s

128bit DDR4-2400
250 GB/s

384-bit GDDR-5
720 GB/s

4096-bit HBM2
Memory
capacity

1.54TB 5 GB 16G 32G
Die size 456 mm² 550mm2 610mm2 815mm2

Transistor
count

7.2 billion 7.1 billion 15.3 billion 21.1 billion
Technology 14nm 28nm 16nm FinFET 12 nm FFN

Power 145W 250W 300W 300W
Power

efficiency
4.37 GF/Watt (DP)
8.74 GF/Watt (SP)

4.66 GF/Watt (DP)
14 GF/Watt (SP)

17.66 GF/Watt (DP)
35 GF/Watt (SP)

25 GF/Watt (DP)
50 GF/Watt (SP)

~3-4 ~1.5

HARDWARE ARCHITECTURE

8

MICROARCHITECTURE EXAMPLE DRIVEN BY MOORE
(& DENNARD SCALING)

9

Register File

Functional
Unit

Functional
Unit

Functional
Unit

Load/store
queue

L1
Cache

L2/3
Cache DRAM

Reser-
vation
station

Reser-
vation
station

Reser-
vation
station

Issue
Buffer

Reorder
Buffer

Decode

Instruction Fetch
Branch

Predictor

Instruction
Cache

Fetch
buffer

x10-9sec x10-8sec x10-7sec

add r1,r2,r3
sub r4,r1,r5
slt r6,r8,r9
bne r6,exit
muld f0,f2,f4
...
…

Speculative
fetch

Speculative
execution

Correctness check
on speculation

Speculative
pre-fetch

Partly by Sudha Yalamanchili, Architectural Alternatives for Energy Efficient Performance Scaling, VLSI Conference, 2013

More transistors
Frequency scaling

Locality (spatial/temporal)
Predictable control flow

Multiple, deep pipelines
Latency minimization & hiding

Speculation everywhere

POST-DENNARD: TRANSITION TO MASSIVELY
PARALLEL MICROARCHITECTURES

10

Instruction
Fetch Decode Issue

Floating point

Integer

SIMD vector

Load/Store

Write-back

Queue

Instruction cache

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Register file

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Interconnect

Shared Memory / L1

Replication Massively parallel
Energy efficient

Frequency reduction
In-order pipelines

Instruction
Fetch Decode Issue

Floating point

Integer

SIMD vector

Load/Store

Write-back

Queue

Instruction cache

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Register file

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Core Core Core DP DP Load /
Store SFUCore Core Core

Interconnect

Shared Memory / L1

<latexit sha1_base64="QppktG4H2zeuAhz7X+HVsBnvLqk=">AAACDHicbVDNSgMxGMz6W+tf1aOXYBEEoezWol6EQi8KHirYbaHdlmyabUOz2ZBkhbL0Abz4Kl48KOLVB/Dm25ht96CtA4Fh5vv4MuMLRpW27W9raXlldW09t5Hf3Nre2S3s7bsqiiUmDRyxSLZ8pAijnDQ01Yy0hCQo9Blp+qNa6jcfiFQ04vd6LIgXogGnAcVIG6lXKNbhFURBze2WT92bXsIIGqEBmcCOkJHQEQy6Z2bKLtlTwEXiZKQIMtR7ha9OP8JxSLjGDCnVdmyhvQRJTTEjk3wnVkQgnB5qG8pRSJSXTMNM4LFR+jCIpHlcw6n6eyNBoVLj0DeTIdJDNe+l4n9eO9bBpZdQLmJNOJ4dCmIGTci0GdinkmDNxoYgLKn5K8RDJBHWpr+8KcGZj7xI3HLJOS9V7irF6m1WRw4cgiNwAhxwAargGtRBA2DwCJ7BK3iznqwX6936mI0uWdnOAfgD6/MHWB+Z+w==</latexit>

P = afCV 2 + V Ileakage / f3

GPU ARCHITECTURE TOP-LEVEL VIEW

11

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

Interconnection Network

Memory
Controller

GDDR Module

Memory
Controller

Memory
Controller

…

…

GDDR Module GDDR Module…

GPU

Off-chip memory

ti
m

e

ti
m

e

with
increasing
#clusters

MIND THE MEMORY HIERARCHY

12

Main memory
TBs, 20GB/s

GPU memory
4GB, 150GB/s

GPU memory
16GB, 800GB/s

GPU memory
48GB, 1.9TB/s

LLC
8MB, 500GB/s

L2
2MB

L1
512kB

Reg.
1kB 5TB/s

1TB/s

LLC
1.5MB, 500GB/s

SM
1MB

Reg.
~4MB,40TB/s

1TB/s

LLC
4MB

SM
~4MB

Reg.
14MB

GK110Intel Sandy Bridge GP100

LLC
40MB

SM
24MB

Reg.
32MB

GA100

SOFTWARE VIEW

13

BULK-SYNCHRONOUS PARALLEL
In 1990, Valiant already described GPU computing
pretty well

Superstep
Compute, communicate, synchronize

Parallel slackness: # of virtual processors v, physical
processors p

v = 1: not viable

v = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation
and communication efficiently

Extremely scalable, bad for unbalanced parallelism

14

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

the ACM, Volume 33 Issue 8, Aug. 1990

THE BEAUTY OF SIMPLICITY

Thread-collective computation
and memory accesses

Thread ID determines data element

GPU collaborative computing
One thread per output element

Schedulers exploit parallel slackness

GPU collaborative memory access
One thread per data element

15
Co

m
pu

te
M

em
or

y

…

…

Output data set

M
C GDDR

GDDR

GDDR

-> If you do something on a GPU, do it collaboratively with all threads

PROGRAMMABILITY OF MASSIVE PARALLELIZATION

Vector ISAs are great
Compact: one instruction for multiple data elements

Parallel: operations are independent

Expressive: complex memory accesses (irregular strides)

Vector ISAs are bad
Orthogonal to multi-threading

Static in size, static in selection, mixed semantic model for
vector/scalar instructions, C/C++ is scalar

N

16
Multi-threading

Ve
ct

or
iz

at
io

n

Instruction stream

D
at

a
po

ol

PU

PU

PU

PU

1

1

1

1

1

4x SIMD example

SIMT EXECUTION MODEL

foo[] = {4,8,12,16};

A: v = foo[tid.x];

B: if (v < 10)

C: v = 0;

 else
D: v = 10;

E: w = bar[tid.x] + v;

A

B

C

D

E

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2

T3 T4

T1 T2 T3 T4

Programmer sees
independent scalar threads

Illusion

GPU HW bundles threads
into warps

Warps run in lockstep on
vector-like hardware (SIMD)

How is divergent control
flow handled?

ACCESSING MEMORY

Explicit memory hierarchy
Manual GPU memory fills &
spilling

Manual shared memory fills

Explicit memory hierarchy
simplifies coherence &
consistency

No guarantees except for
kernel completion boundaries

Software-controlled coherence

18

Thread

Thread
Block

Multiple
Kernels

Registers
64k/thread block

Shared Memory
16-48kB

L1 Cache
16-48kB

Read-only data
Cache 48kB

L2 Cache
1.5MB

GDDR (off-chip)
6GB

Host memory (off-device)
multiple TBs

GPU

GPU card

OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step

SIMT: single instruction, multiple threads

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture
SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

19

MAKING GPU USAGE EASY

GPU LIBRARIES

} Inner loops
Threads
Kernels

PROGRAMMING MODEL
CUDA program consists of CPU & GPU part

CPU part: part of the program with no or little parallelism

GPU part: high parallel part, SPMD-style

Concurrent execution
Non-blocking thread execution

Explicit synchronization

C Extension with three main abstractions
1.Hierarchy of threads

2.Shared memory

3.Barrier synchronization

Exploiting parallelism
Fine-grain data-level parallelism (DLP)

Thread-level parallelism (TLP)

21

…

G
PU

CP
U

CP
U

…

G
PU

CP
U

} Ke
rn

el

Physical

Virtual

JUST-IN-TIME COMPILATION
Device code only supports C-subset of C++ (getting better)

Compile with nvcc
Compiler Driver

Calls other tools as required

cudacc, g++, clang, …

Output
C code (host CPU Code)

Either PTX object code, or source code for run-time
interpretation

PTX (Parallel Thread Execution)
Virtual Machine and ISA

Execution resources and state

Linking
CUDA runtime library cudart

CUDA core library cuda

22

CUDA program

PTX x86

nvcc

PTX to target

GF100 GK110 GP100

 SAXPY EXAMPLE

SAXPY: Scalar Alpha X Plus Y

Simple test to demonstrate GPU programming
Will start with lowest programming paradigm: CUDA

End at highest level abstraction: CuPy

Source code contains kernels for the GPU and the CPU

23

y[i] = α ⋅ x[i] + y[i]

CUDA EXAMPLE
Kernel definition:

Host <-> Device interaction:

Kernel execution:

Host <-> Device interaction:

24

int main(void)
{
 int N = 20 * (1 << 20);
 float *x, *y, *d_x, *d_y;
 x = (float*)malloc(N*sizeof(float));
 y = (float*)malloc(N*sizeof(float));

 cudaMalloc(&d_x, N*sizeof(float));
 cudaMalloc(&d_y, N*sizeof(float));

 for (int i = 0; i < N; i++) {
 x[i] = 1.0f;
 y[i] = 2.0f;
 }

 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

 // Perform SAXPY on 1M elements
 saxpy<<<(N+511)/512, 512>>>(N, 2.0f, d_x, d_y);

 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

 cudaDeviceSynchronize();

 // Free memory
 cudaFree(d_X);
 cudaFree(d_Y);

 // Do some printing
}

__global__
void saxpy(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

LOW-LEVEL LIBRARIES

Require good understanding of the CUDA execution model

cuda-python
Just plain CUDA C++ with some Python for device control

numba-cuda
CUDA, but as Python not as C++, still very close to CUDA. JIT-compiled

Triton
Abstraction to Tensor operations, less flexible, but often better optimized

25

NUMBA-CUDA
Imports:

Kernel definition:

Host <-> Device interaction:

Kernel execution:

26

import numpy as np
from numba import cuda

Kernel definition
@cuda.jit
def f(a, x, y):
 # like threadIdx.x + (blockIdx.x * blockDim.x)
 tid = cuda.grid(1)
 size = len(y)

 if tid < size:
 y[tid] = a*x[tid] + y[tid]

Vector allocation and copy to Device
N = 100000
x = cuda.to_device(np.random.random(N))
y = cuda.to_device(np.random.random(N))
alpha = 2.

Kernel execution
Enough threads per block for several warps per block
nthreads = 256
Enough blocks to cover the entire vector depending on its length
nblocks = (len(a) // nthreads) + 1
f[nblocks, nthreads](a, x, y)

Copying data back to host and print
print(y.copy_to_host())

HIGH-LEVEL
Taichi

JIT compiled Python code as kernels

No more detailed GPU thread control required

CuPy
No more kernel writing

Basically Numpy, but on a GPU

Adds a few functions for data transfer and device control

Deep Learning focused (include AutoGrad)
Jax

TensorFlow

PyTorch

27

CUPY

28

Imports:

Host <-> Device interaction:

Execute operation:

import cupy
import numpy as np

Vector allocation and copy to Device
N = 1000000
x = cupy.asarray(np.random.random(N))
y = cupy.asarray(np.random.random(N))
alpha = 2.0

Execute saxpy op
y += alpha * x

Explicit copy back to host and print
(implicit often also works)
print(cupy.asnumpy(y))

CUPY: SOFTWARE ARCHITECTURE

29

WRAPPING UP

NEURAL NETWORKS AND GPUS

Matrix multiplication is at the heart of
neural networks

 elements - independent but very similar
computations

Compute scales with , memory with

GPUs are
massively parallel vector-based processors

excellent in compute, limited in memory capacity

Bonus: highly energy efficient => many operations per
Watt

Y = W ⋅ X

N2

𝒪(N3) 𝒪(N2)

31

structured
parallelism

computationally
intensive

NVIDIA

SUMMARY

Key differences to a CPU
Much (many much’es) more parallelism

Latency is not minimized, but tolerated

Offload compute model

No general-purpose programming (yet?)

Memory capacity is small

Single-thread performance is a nightmare

Programming GPUs
Both low- and high-level abstractions are available

The best library highly depends on the use-case

32

SMSMSM

Address-sliced XBARs

L2 slice

SMSMSM

L2 slice

DISCUSSION
EXERCISE 02

Groups presenting today:
Code: Group 6 (Daniela & Finn)

Plots/Observations: Group 5 (Vincent & Julius)

GENERAL REMARKS

LR observation across groups
Low LRs are slow, higher LRs fast & just as good

But: Our current task (MNIST) is pretty simple, be careful to generalise this

Two equivalent ways to compute sigmoid derivative:

Gradient normalisation
Gradient must be normalised to batch size, otherwise LR depends on batch size

Please use robin.janssen@ziti.uni-heidelberg.de (not @stud…) 🤷

σ(x) =
1

(1 + e−x)
→ σ′￼(x) =

e−x

(1 + e−x)2
= σ(x)(1 − σ(x))

34

mailto:robin.janssen@ziti.uni-heidelberg.de

THIRD (AND FINAL) EXERCISE
Weights and Biases logging (wandb.ai)

Port NumPy implementation to CuPy
Code template: ex2 solution

GPU access: HAWAII cluster (how_to_cluster.pdf)

Account credentials via email

Experiment with different network sizes

Compare CPU and GPU execution times

To be submitted via e-mail by:
Wednesday 9:00

Discussion after project examples

35

https://hawaii.ziti.uni-heidelberg.de/teaching/
ap_nn_from_scratch_materials_wise2025/

https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/
https://hawaii.ziti.uni-heidelberg.de/teaching/ap_nn_from_scratch_materials_wise2025/

