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Similar to a normal presentation

Key differences:

Shorter talks

Only 1 slide
Direct interaction with speakers
More flexible Q&A

In general more networking

NeurlPS 2023 Poster Session 1 (Tuesday Evening)

https://www.youtube.com/watch?v=oUgnvQm_k9M



https://www.youtube.com/watch?v=oUqnvQm_k9M
https://www.youtube.com/watch?v=oUqnvQm_k9M

POSTER SESSION: FORMALITIES PART 1

Date and time: 04.03.2025, 13:00 to 16:00
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Poster size: AQ
Plotting:

We can plot your posters at our institute

Please submit your posters as PDFs for printing to us no later than 02.03, 10:00

All members of the group have to attend for the poster session

If in-person is not possible, a virtual presentation can be arranged

Alternatively a later date can also be arranged
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Afterwards 5 to 10 minutes of questions
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Abstract

k in e-sports and online games, as Il cc
Maar;C:C?;?lkelggclies, Eli’r(;?/:gulsa?nelhods L:ocus on crealing?air games at =!l times. They divide players into different tiers bqsed on skill
’ ch game. Though this strategy can ensure fair matchmaking, it is not
always good for plnyei engagement. In this paper, we propose a novel Engagemgnt-oriemed Matchmaking 'EnMFa"f:\tf:musgzg
to ensure fair games and simultaneously enhance player engagement. Two main issues need to be addressed. First, ‘consndering
how to measure [he impact of different team compositions and confrontations on player engagement during thehgan;en oy
the variety of player characteristics. Second, such a detalled consideration on every single player during matchma 1! g ket
in an NP-hard combinatorial optimization problem with non-linear objectives. In light of these challenges, we turn nc: i
data analysis to reveal engagement-related factors. The resulting insights guide the development of enga’?:?w:uon romem.
enabling the estimation of quantified engagement before a match is completed. To handle the combinatorial optimiz p :

levels and only select players from the same tier for ea

EnMatch: Matchmaking for Better riayer E(\gagement
via Neural Combinatorial Cptimization

ipeng Hu, Xiaochuan Feng, Minghao Zhao, Shiwel Zhao, Runze Wu,
Xudong Shen, Tanajie Lv, Changjie Fan
Fuxl Al Lab, NetFace Inc., Hangzhou, China
{wangkai02, liuhaoyuf3, wurunze1}@corp.netease.com
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butes to player engagement and further influences the

i i I
we formulate the problem into a reinforcement learning framework, in which a neural cqmbmagonal Opllrmlatlo" larcit::nr\n :mtz:;s
and solved. The performance of EnMatch is finally demonstrated through the comparison with other state-oi-tne
based on several real-world datasets and online deployments on two games.

_ ®Select , OEnumerate o Meth OdS

n@'ld‘;‘ = : = @} 1P The overall framework is presented in this figure and there are

er o= :

"""""""""" d o= five major components:

R
= = @} p= Eu: y 1. Matching Pool refers 1o the set of all players who have not
“““ Terd n R G Sm" been selected. In each step of maching, the matching pool
© — = ‘al I3 e removes the selected 2K players. 2. Encoder ;nncu
T tations for players in the matching pool, considering
1 Selecting 2K players Fairest team-ups representa
Introduction

Matchmaking is an essential part of e-sports and online
games. It pairs players into different combat teams anq helps
maintain an enjoyable playing experience for all participants.
Previous research focuses on creating balanced games,
where closely skilled players are matched to create
competitive gameplay, assuming that balanced teams are the
most desired matchmaking outcome for players. They hereby
design an effective and —owmafow .

efficient strategy first
divide players into different
tiers and then only select
players from the same tier
to form opposing teams.
Players in the same tier

are supposed to have

similar gaming  skills.

Hence, through this *Dﬁ\__‘\\ = -1__]
approach, all the players - &g/ :

in one combat have similar = e

gaming skills so that the R
fairess of games could be well ensured. However, is game

faimess the only critical factor for player engagement? In
most matchmaking scenes, the answer Is no, which has been
demonstrated in EOMM. Using churn rate as an Indicator of
player engagement, EOMM analyzes the impact of match
win-loss outcomes on player retention in 1-vs-1 scenes and
shows that fair games are not sufficient to ensure player
engagement. However, it still remains unexplored In scenes
that contain multiple players in one team, l.e., k-vs-k mode,

the potential interactions between players with diverse charactenstcs 3. Masked
Decoder generates 2K players autoregressively based on the inputted player
representations from the encoder The generated 2K players can be directly
divided into two teams, which are odd-index and even-index teams 4. Heuristic |
Operator is a specially designed CO operator aimed at further enhancing the
matching results obtained through decoder output 5. Engagement Model
provides engagement prediction for each selected player with the playersO
feq&:_rﬂes and team-uLB.iniormalion as input
i Supervaed Leaming
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() Engagement Model

4 meuranc Operator

As a typical reinforcement learming loop, in EnMatch, the engagement model
(i.e., the environment) provides a prediction of user engagement (l.e., the reward
signal) and updates the matching pool (l.e., the state) which is subsequently
used to generate 2K players (L.e., the action). The decoderUOs matchmaking
results and those obtained by the heuristic operator are jointly optimized to

encourage the decoder o out- put good results from the beginning and be more
heuristic operator friendly

Analysis and Results

Player engagement-related behavior statistics for
different kinds of teams under win/loss situations.

The Impact of player states
on their engagement

Performance comparison for different
f n
matchmaking methods in the two Online performance compariso:

on two games.

simulation environments.
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Abstract p

. anntum error correction codes (QECC) are a key component for real-
izing the potential of quantum computing by allowing the protection of
quantum information from quantum noise.

» We propose to tackle the QECC challenges by adapting neural decoding
techniques in the classical ECC setting to the quantum domain.

» The proposed method achieves state-of-the-art accuracy, outperform-

ing, on topological codes, the existing neural and classical decoders,
which are often computationally prohibitive,

Quantum Error Correction Coding

Syndrome
Measurement

E
A quantum bit (qubit) is defined as the superposition of two states

[0y =al0y + 1), st. a,BEC, |af+|AF=1 (1)
Encoding
The initial logical set of qubits |1) is redundantly encoded to a larger set
of n physical qubits [1),, via quantum entanglement.
Transmission
The encoded quantum state is perturbed by quantum noise (e.g., quan-
tum gates, decoherence) defined by the quantum error process 2. There
is no arbitrary access to the current state (contrary to the classical set-
ting), so only the code syndrome s, defined by the code parity check
matrix, is measured,
Decoding
The goal of the parameterized decoder fj : B”) — R" is to provide a soft
approximation of the noise to be corrected, i.e., Z = f(s).

Motivation

Three major differences with classical error correction can be established

¢ Syndrome Decoding: There is no arbitrary access to the current
state (due to quantum wave measurement collapse) such that only par-
tial information defined by the syndrome is available. It requires an
adaptation of the existing neural decoders to syndrome decoding.

# Logical Decoding: We are interested in the logical qubits only, mean-
ing we wish to predict the codeword up to the logical operators mapping
L (ie., LZ instead of %). However, this mapping is defined over the
highly non-differentiable G'/7(2) (i.e., XOR).

s Noisy Syndrome measurement: The syndrome measurement itself

being noisy, the decoding must be performed based on multiple noisy
measurements of the syndrome,

Yoni Choukroun, Lior Wolf

Overcoming Measurement Collapse by Prediction

» We propose to extend the existing SOTA classical neural decoder [1],
by replacing the channel output with an initial estimate of the noise g,
to be further refined by the code-aware network.

Zfo([9..(s), 8)), 2)
o The estimator ¢,,(5) is trained via the following objective
L, = BCE(g.(3),£), ()

where BCE s the binary cross entropy loss and & the system noise.

Logical Decoding

o The logical error rate (LER) metric provides valuable information on
the practical decoding performance.
o Thus, we wish to minimize the following LER objective
CTER = BCE(ILfo(H), Le) (4)

where the multiplications are performed over the highly non-
differentiable G//7(2).

o Defining the bipolar mapping ¢(u) =1 —2u,u € {0,1}, we obtain
M@ v) = plu)p(v),Yu,v € {0, 1}. Thus, withz € {0,1}", we have
(AL,2), =Li®z=¢ '(Il,(/)((IL),j : :1:,/)). (5)

e Thus, as a composition of differentiable functions A(IL, z) is differen-
tiable and we can redefine our training objective as follows

LLER = BCE(A(IL, I;iu(ﬁ;(s))),Le), (6)

where bin denotes vector binarization.

&N -
Noisy Syndrome Measurement

o At each time sample we have the measured syndrome defined as

LR (I/(.’lf’ba -’}r”"UE/)) @ €y (7)

-We first analyze egch measurement separately and then perform effi-
cient global qecodlng at the embedding level by applying a symmetric
pooling function (average) in the middle of the neural network.

» Given a neural decoder with V layers and the activations ¢ € R?*"*",

These challenges are at the core of our contributions,

the pooled embedding is given by () — Y1 1 at layer L = [ N/2].

Deep Quantum Error Correction

-

Objective and Architecture
The overall objective is given by

L = deerLeer + MerLier + AL,
where Ageger, € R* denote the weights of each objective.
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Some Results
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Conclusions

o First adaptation of QECC challenges to neural decoders (Transformers).
» Optimization over boolean algebra.
¢ SOTA performance on a large variety of codes.

[1] Error Correction Code Transformer, Yoni Choukroun and Lior Wolf,
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Coherence Predictor
coherence traffic i

D Gy i m Cache coherence protocols k
. ol eep cached data
gt\jzr TTlme, these Proposed mechanisms were forsaken Ffeaiay o cortof e oo
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emergence of sca

architectures that
have revitalized such proposals.
In this work, we
re-implement them in
Additionally,
ogtimizes all the different data shar
minimum  impact  in  the
microarchitecture.

review bygone proposals t

modern

Coherence Predictors

u Adoptive coherence predictors failed due to its
limited capability to detect sharing patterns and the

hardened cost of verifying such complex protocols
m Encouraged by the branch prediction blooming

predictors were applied to select between basic

coherence protocols to reduce coherence traffic

m Coherence predictors were designed for bus-based
multiprocessors and evaluated with trace-based

simulators. Thus, their effectiveness is unknown

Coherence Predictor

Prod/Cons

E Prediction

Methodology

e We use gem5-23 with CHI coherence prpfocol to
model a 32-core-mesh HPC system as baseline

e We use SPLASH-3, PARSEC and Graph Analytics
applications to evaluate the designs

e As demonstrator, we implemented a minimalis!ic
predictor that selects between copy-on-read-miss
and migrate-on-read-miss

e Speed-up of 1.06x on average (up to 1.27x in RAY)

f coherence

o . jon O
a Revision and re evaluatio gl

predictor mechanisms  in
NoC-based multicores

s Design and implementation of generic
scheme for coherence predictor

Aragon [T582

Il be back": the Reemergence
of Coherence Predictors

Victor Soria-Pardos],
» Dario Suarez Gracija?

S Were proposed to reduce cache

!ing challenges. Recent manycore
Integrate beyond a hundred cores

modern multicore architectures.
we formulate a general mechanism that

ing patterns with
multicore

Coherence Protocol Selection
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Adaptive Coherence

niversitat Politécnica de G

Multiple prgt_ocols exist based on different policies,
each optimizing a different data sharing pattern

Adopﬂve_ coherence protocols apply a specific
transactions for each data sharing pattern

s Multiple protocols merged into an adaptive protocol

Basic Coherence Protocol

Adaptive Coherence Protocol

1. Re-evaluate state-of-the-art coherence predictors,
modeling them within a modern multicore with latest
cache coherence protocol standard

i m Evaluation based on speed-up,

NoC traffic
reduction, accuracy, power consumption and area
overhead

= We use state-of-the-art tools for this evaluation
such as: cycle-accurate simulators, real parallel
applications and RTL synthesis

2. Design a general prediction mechanism that
optimizes several data sharing patterns

s Graph-based analysis of coherence transactions
s Located in the Directory for minimal alteration

Results

Figure 1. Speed-up of demo Coherence Predictor with
respect to the baseline system with MOESI protocol
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